NOKIA Bell Labs

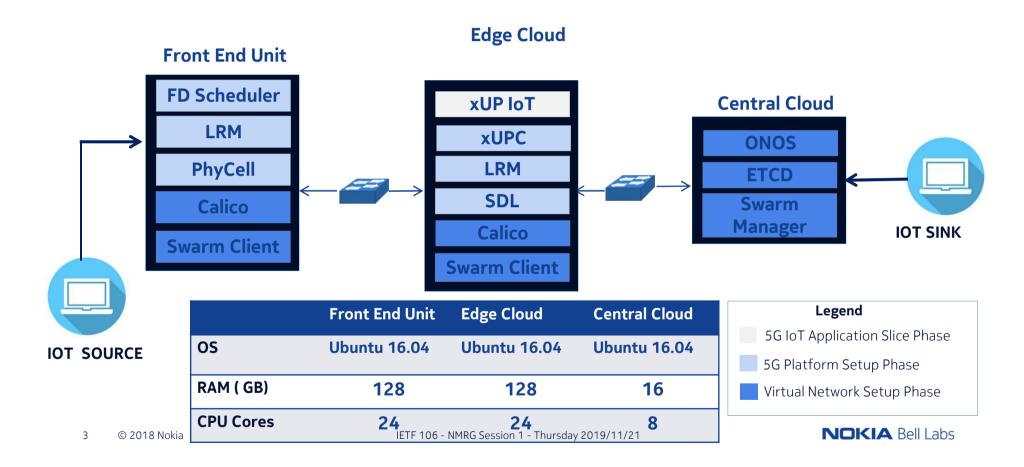
Intent-based networking for OTT applications concepts, lifecycle and challenges

Fred Aklamanu, Sabine Randriamasy

IETF 106 – Singapore – NMRG session1 Thursday 2019/11/21

1 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21


Presentation Outline

- Context
- Previously presented PoC
- Proposed OTT Intent-Based Networking Framework
- Lifecycle and Challenges

2 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Use-Case : Intent-Based 5G IoT Application Slice on a Cloud RAN

Existing research

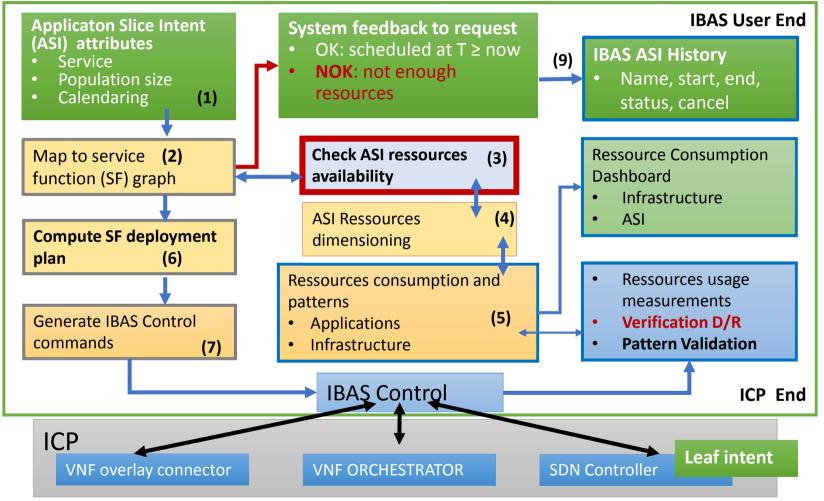
- Current Intent Frameworks are tailored towards domain experts
 - Knowledge of the network infrastructure is required
- Implementation focuses on network connectivity in fixed networks
- Formal languages for Network Intents are still work in progress.

4 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Proposed approach

Extend Intent Based networking

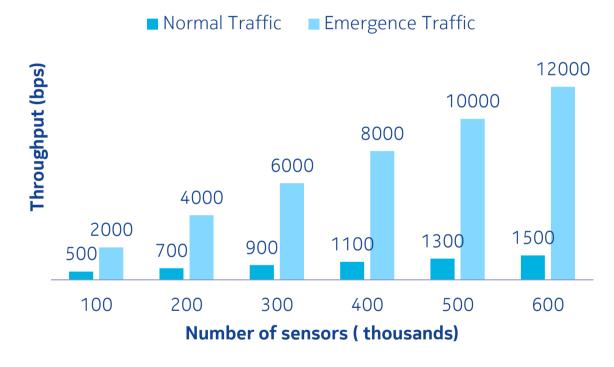

- From connectivity to applications
- From network operation to Over –The-Top (OTT) application provisioning
- From fixed networks to cellular & wireless technology

• Current focus

- Intent request feasibility check and management
- Intent network application slice automation
- 5 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

OTT IBAS Framework – lifecycle – basic organisation



Example Intent-based request expression with keyfields, parameters, attributes

```
keyfields = attributes, values = parameters, properties
```

```
{
   service: IoT-34ABC
                                                                     Basic Intent definition parameters
   sensors: 100, 000
                                                                     Intent dimension parameters
   SLA: {
                                                                     Intent performance parameters
                 bandwidth: [0,1]/small rate
                                                                     Quantitative/qualitative
                 latency: [0,100]/near instant
                                                                     User or system specified
    location: Paris – 15e
                                                                      Intent time/space footprint
                                                                      attributes
    start:11h00
    end: 12h00
                                                                                   NOKIA Bell Labs
    © 2018 Nokia
                                   IETF 106 - NMRG Session 1 - Thursday 2019/11/21
7
```

Deployment verification: with 5G IoT Traffic Simulation

IoT Packet Throughput

✓ Assurance

IoT Traffic Attributes

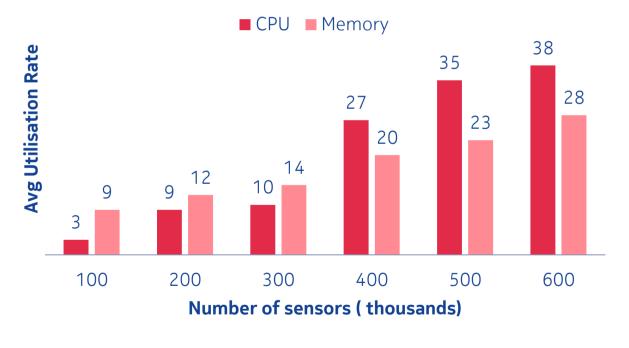
• Packet header 46 bytes

• Payload of less than 120 bytes

• Sensor nodes are static, **NO MOBILITY** considered therefore **NO PACKET COLLISIONS** considered

Results

• **Expected traffic pattern is observed** as traffic sent from source node is


received on sink node.

8 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Resources and Monitoring Validation: using 5G IoT Traffic Simulation

Validation of Resource and Intent Monitoring Module

Resource Analysis

✓ Assurance

IoT Slice Resources Attributes

- Dedicated 2 CPU Cores
- Dedicated 1 GB RAM
- Packet header 46 bytes
- Payload of less than 120 bytes
- Sensor nodes are static, **NO MOBILITY** considered therefore **NO PACKET COLLISIONS** considered

Results

- No alarming resource consumption increase is observed
- Observations will refine the intent slice resources dimensioning

9 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Performance Evaluation function of Intent Based Framework

- Confirms deployment and termination of calendered application slice
 Displays internals of deployment for IBF or specialized user
- Displays Intent-to-run-time delay → health + performance indicator
 - •Here: Reduction in network service provisioning time, from hours to minutes

	Number of VNFs	Time (secs)
Virtual Network Setup	5	13
5G Platform Setup	7	63
5G IoT App Slice	1	10
Total	13	86

Specific to IBF
Model should be generic

10 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

First conclusions on basic Intent-Based Framework

- Simpler and faster deployment
 - abstracts network details and complexity from tenants and users
 - speeds-up application slice deployment
- Preventive system feedback ensures feasability of **fullfillment**
 - resources availability check
 - deployment check
- On-line measurements to monitor Intents
 - verify that traffic is flowing according to specified pattern (assurance)
 - in/validate resources dimensioning
 - expose resources consumption for reliable billing
- 11 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Challenges

- OTT slices may span several domains (technology and/or admin)
- applications need end to end deployment and lifecycle management
- « real life » IBN frameworks may be composed of several basic frameworks
- A basic intent framework framework may interact with a variety of
 - Infrastructure controller implementations
 - Other intent frameworks
- Formal model for Network Applications Intents: parametric
 - wat can be made re-usable?
- •Intents realize various services at different layers
- •An intent framework should be specialized
 - •wrt e.g. : location, technology, admin. domain
 - what Classification parameters? Which ones are re-usable
- Specialized Intent definition topology abstraction model
- •Formal model for in-line intent evaluation

12 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Thank you for your attention

13 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

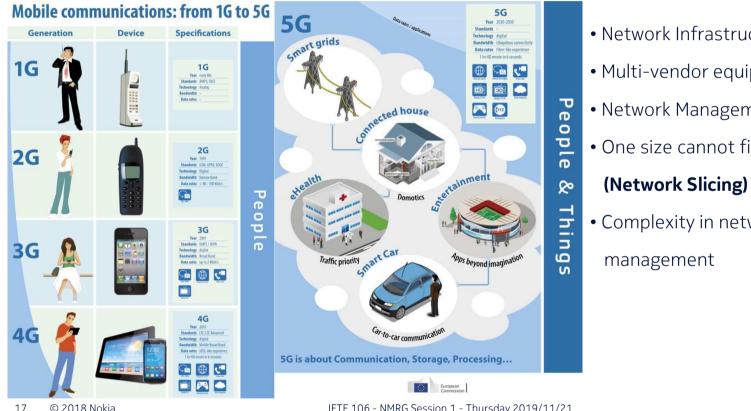
References

- 1. F. Aklamanu, S. Randriamasy, E. Renault, I. Latif, A. Hebbar: "Intent-Based Real-Time 5G Cloud Service Provisioning". 2018 IEEE GLOBECOM Global Communications Conference, December 2018
- Fred Aklamanu, Sabine Randriamasy, Eric Renault, Intent-Based 5G IoT Application Network Slice Deployment, 10th International Conference on Networks of the Future (NoF), Special Joint NMRG - NoF Demo Session on Intent-Based Networking - Oct 2019.
- 3. Fred Aklamanu, Sabine Randriamasy, Eric Renault, "Utility and A*-based Algorithm for network slice placement and chaining ", to appear at IEEE Globecom, Dec. 2019

14 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

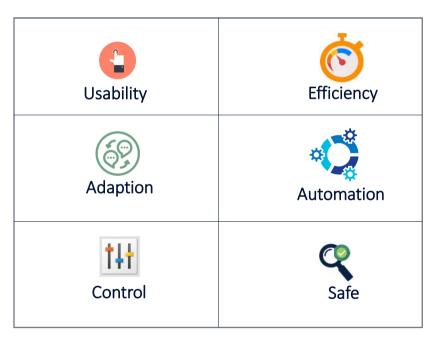

Intent Request Form

→ C ③ 30.5.96.33:8080/#!/a	ddintent		☆
AS PLATFORM	NOKIA BELL LABS INTENT BASED APPLICATION SLIC	NG (IBAS) PLATFORM	
		Intent Request Form Name of Intent	
- ADD INTENT	IoT Slice		Ŧ
	250000	Select Number of Clients	•
	Start Date	End Date	
	← 2017-Oct →	Intent Description	
	Su Mo Tu We Th Fr Sa		
	1 2 3 4 5 6 7		
	8 9 10 11 12 13 14		
	15 16 17 18 19 20 21 22 23 24 25 26 27 28	Schedule Intent	
	22 23 24 23 20 13 28 29 30 31 1 2 3 4		

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Motivation

[•] Network Infrastructure Complexity


- Multi-vendor equipments
- Network Management Issues
- One size cannot fit all
- Complexity in network slice life cycle

17 © 2018 Nokia IETF 106 - NMRG Session 1 - Thursday 2019/11/21 Source: https://www.broadbandgenie.co.uk/features/5g-future-mobile-broadband

What is Intent-Based Networking?

Tell me WHAT to do not HOW to do it

18 © 2018 Nokia

Source: ET51 SurANAR 355 WE Aw JAK INA 4351 2/24/24

State-of-The-Art Highlights

Implementation

- Open Network Operating System (ONOS) Intent Framework
 - > add-host-intent host-id1 hostid2
 - > add-port-intent switchId/InPort switchId/Outport
- Network Intent Composition (NIC) OpenDay Light
 - > intent:add -a ALLOW -t 00:00:00:00:00:01 -f 00:00:00:00:00:02 -q QOS -p High_Quality
- NEtwork MOdeling Language (Nemo)
 - > node user01 type logicnw user01
 - > flow dcinternet match IPv4src:list(10.1.1.0/24) match IPv4dst:list(10.1.1.0/24)

Publication

Intent-based Cloud service management

- S. H. Wu Chao, "Intent-based cloud service management," in 21st Innovation in Clouds, Internet and Networks. IEEE, 2018.
- Focuses on resource allocation for cloud services
- Allows users to specify their service-layer requirements in a language natural i.e user-friendly way.
 - 19 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

State-of-The-Art Highlights

4th Generational Languages (4GL)

•Aims to provide a higher level of abstraction

- 4GL is subset of Domain Specific Languages (DSL).
- 4GL may include support for database management, report generation, mathematical optimization, GUI development, or web development

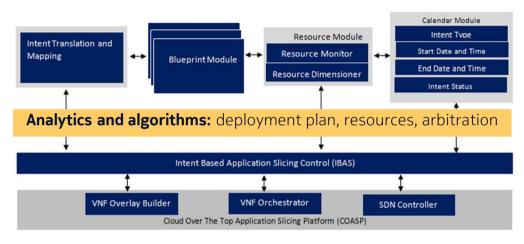
Why a deep dive into 4GL

- Representation model for intents
- A possible language for Intent expression

20 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

State-of-The-Art Highlights Transformational Languages


- 1. Spoon (Java) -> Tailored towards java only thus Intents need to expressed in java
- 2. C Intermediate Language (C) -> Target programs/ code should in C
- 3. Coccinelle (C) -> Target programs/ code should in C
- 4. Stratego/XT (Lex and Yacc) -> It can also serve the purpose of language transformation but all lexicals need to be defined by the user
- 5. Turing eXtender Language (TXL) -> Generic thus a potential candidat e for language transformation it provides a predefined lexical library that can be extended

Take-away

- Standardised Intent Language and expression are a must (domain specific languages)
- Intent decomposition into various domains
- 21 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

OTT IBN Framework - deployment cycle - coarse

Analytics and algorithms

Abstract infrastructure topology and parameters

Support to user specification of intent footprint

Computes VNF deployment plan, adapts consumption models

Intent Based Application Slicing Control Module

Central hub for communication between underlying physical network infrastructure Controllers and the IBN Modules.

Gets relevant information on underlying infrastructure

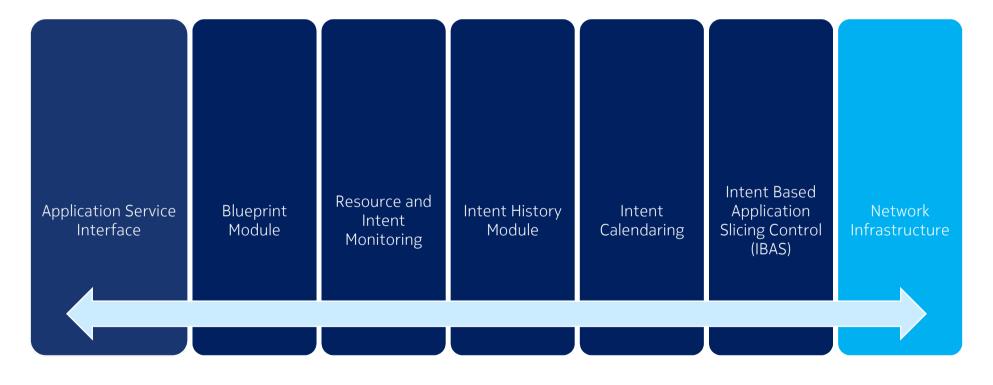
22 © 2018 Nokia

• Intent Translation and Mapping: Intent Request Interface to Network User (Function)

Gets Network User request (Intents) parameters Maps them to Blueprint DB search parameters

BluePrint Module

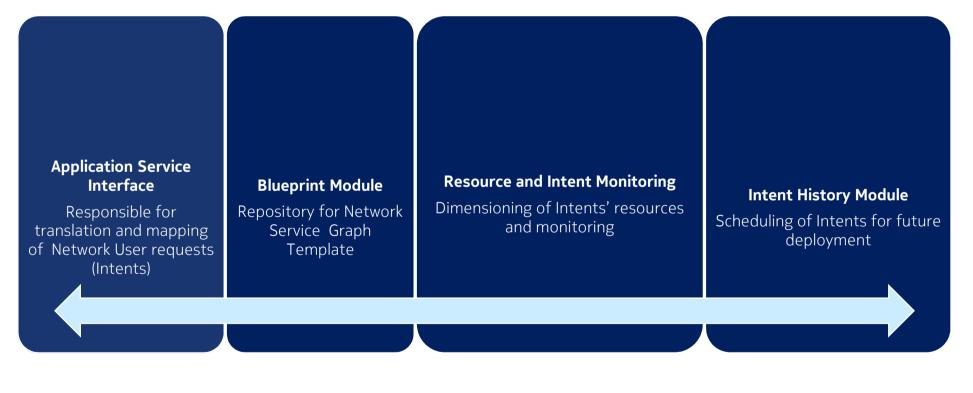
Repository for Network Service Template VNF directed graphs + initial VNF profile


Resource Module

Monitors resource consumption of Cloud + VNF chain Dimensions Intent resources: Cloud + Network Checks resources availability

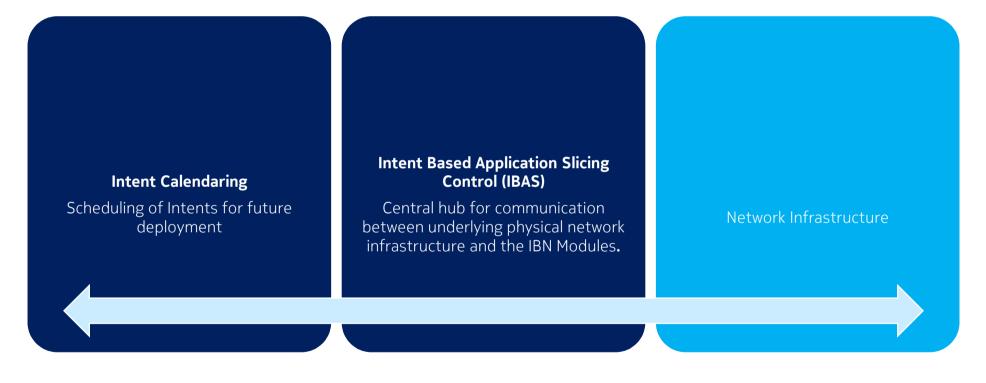
Intent Calendaring Module

Schedules Intents for automatic future deployment


Proposed Intent Based Networking Framework

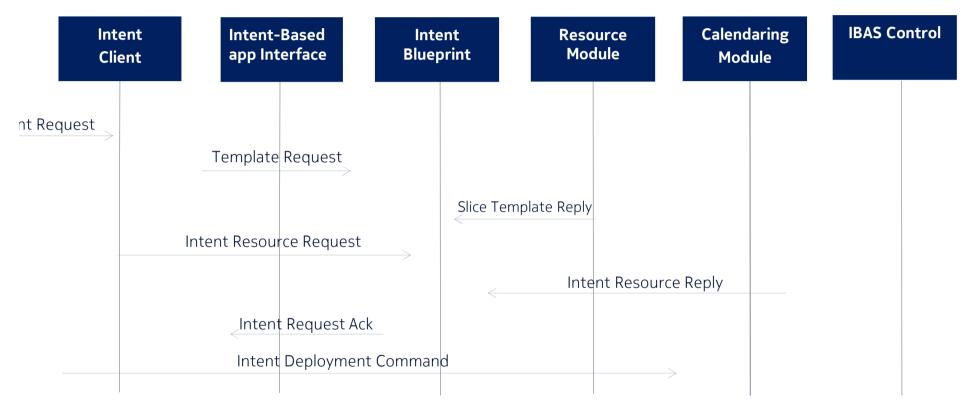
23 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21


Proposed Intent Based Networking Framework Modules

24 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21


Proposed Intent Based Networking Framework Modules

25 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Intent Deployment Process Flow

26 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

Example of mapped Service Graph Template (Blueprint)

{
 service: IoT
 components: [VNF1, VNF2, VNF3 VNF4, VNF5]
}

NB: components configuration are stored in a DB

27 © 2018 Nokia

IETF 106 - NMRG Session 1 - Thursday 2019/11/21

