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Enarx Principles

1. We don’t trust the host owner
2. We don’t trust the host software
3. We don’t trust the host users
4. We don’t trust the host hardware

a. … but we’ll make an exception for CPU + firmware



Enarx Design Principles

1. Minimal Trusted Computing Base
2. Minimum trust relationships
3. Deployment-time portability
4. Network stack outside TCB
5. Security at rest, in transit and in use
6. Auditability 
7. Open source
8. Open standards 
9. Memory safety

10. No backdoors



Enarx Architecture
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Enarx is a Development Deployment Framework

Choose Your 
Language / Tools

Compile to 
WebAssembly

Develop 
Application

Choose Host

Instance 
Configuration



Bare Metal Virtual Machine Container Serverless

Abstracts HW Abstracts Linux Abstracts Protocol

Just enough legacy support to enable trivial application portability.
Homogeneity to enable radical deployment-time portability.
No interfaces which accidentally leak data to the host.
Bridges process-based and VM-based TEE models.
No operating system to manage.

Abstracts
Common
OS APIs



Process flow



Overview (AMD example)
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Enarx architectural components
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Enarx attestation process diagram
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Enarx Status



Current Status

1. SEV: Fully attested demo w/ custom assembly.
a. Ketuvim: KVM library with SEV support

2. SGX: Fully attested demo w/ data delivery.
3. PEF: Ongoing discussions with POWER team.
4. WASM/WASI: Demo with some basic WASI functions.



We Need Your Help!
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Website: https://enarx.io

Code: https://github.com/enarx

Master plan: https://github.com/enarx/enarx/issues/1

License: Apache 2.0

Language: Rust

https://enarx.io
https://github.com/enarx
https://github.com/enarx/enarx/issues/1
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