
Protection for data in use

Enarx

Mike Bursell
Office of the CTO

Nathaniel McCallum
Sr. Principal Engineer

https://enarx.io

https://enarx.io


Trusted 
Execution
Environments



Trusted Execution Environments

TEE

TEE is a protected area within the 
host, for execution of sensitive 
workloads

Host



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Environments

TEE

TEE is a protected area within the 
host, for execution of sensitive 
workloads

Host



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Environments

TEE

Host

Q. “But how do I know that it’s a 
valid TEE?”

Tenant



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Summary

Tenant
TEE

Q. “But how do I know that it’s a 
valid TEE?”
A. Attestation

Host Attestation



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Summary

Tenant
TEE

Attestation

Attestation includes:
● Diffie-Hellman Public Key
● Hardware Root of Trust
● TEE Measurement

Host



TEE provides:
● Memory Confidentiality
● Integrity Protection
● General compute
● HWRNG

Trusted Execution Summary

Tenant
TEE

Attestation

Attestation includes:
● Diffie-Hellman Public Key
● Hardware Root of Trust
● TEE Measurement

Code + Data
(Encrypted)

Host



Introducing 
Enarx



Enarx Principles

1. We don’t trust the host owner
2. We don’t trust the host software
3. We don’t trust the host users
4. We don’t trust the host hardware

a. … but we’ll make an exception for CPU + firmware



Enarx Design Principles

1. Minimal Trusted Computing Base
2. Minimum trust relationships
3. Deployment-time portability
4. Network stack outside TCB
5. Security at rest, in transit and in use
6. Auditability 
7. Open source
8. Open standards 
9. Memory safety

10. No backdoors



Enarx Architecture

VM-Based
Keep

Process-Based
Keep

SGX

Sanctum

SEV

PEF

WebAssembly

WASI

Language Bindings (libc, etc.)

W3C
standards

Application

MKTME



Enarx is a Development Deployment Framework

Choose Your 
Language / Tools

Compile to 
WebAssembly

Develop 
Application

Choose Host

Instance 
Configuration



Bare Metal Virtual Machine Container Serverless

Abstracts HW Abstracts Linux Abstracts Protocol

Just enough legacy support to enable trivial application portability.
Homogeneity to enable radical deployment-time portability.
No interfaces which accidentally leak data to the host.
Bridges process-based and VM-based TEE models.
No operating system to manage.

Abstracts
Common
OS APIs



Process flow



Overview (AMD example)

16

Secure VM

“Server” “Client”

Tenant

Attestation 
handshake

Code + data 
delivery 

(encrypted)

Host
AMD 

firmware

Code runs



17

Enarx architectural components

Attestation

Code + Data
(Encrypted)

Host Client

Orchestrator
(e.g. Openshift/k8s, 

Openstack)

Enarx runtime

Application

CPU + firmware

Enarx host 
agent

Enarx 
client 
agent

CLIKeep

Client/ 
host agent 

comms

6

2, 4

1, 5

1, 5

3,7



Enarx attestation process diagram

Client Host

CLI / 
Orchestrator

Enarx client 
agent

Enarx host 
agent CPU/firmware Enarx Keep

1. Request workload 
placement

2. Request Keep

3. Create Keep, load 
Enarx runtime

4. Measurement of 
Keep + Enarx runtime

5. OK/not-OK

6. Code + Data 
(encrypted) 

7. Load Code + Data 
into Keep



Enarx Status



Current Status

1. SEV: Fully attested demo w/ custom assembly.
a. Ketuvim: KVM library with SEV support

2. SGX: Fully attested demo w/ data delivery.
3. PEF: Ongoing discussions with POWER team.
4. WASM/WASI: Demo with some basic WASI functions.



We Need Your Help!

21

Website: https://enarx.io

Code: https://github.com/enarx

Master plan: https://github.com/enarx/enarx/issues/1

License: Apache 2.0

Language: Rust

https://enarx.io
https://github.com/enarx
https://github.com/enarx/enarx/issues/1


Questions?

https://enarx.io

https://enarx.io

