TEEP Protocol

draft-tschofenig-teep-protocol-01

Hannes Tschofenig, Ming Pei, Dave Wheeler, Dave Thaler

History

* draft-tschofenig-teep-protocol-00 created to reflect WG decisions to
offer COSE/JOSE encoding, re-use EAT for attestation (RATS WG), and
SUIT manifest (SUIT WG), and to align with TEEP architecture draft.

* Reduces need to re-design already existing functionality
* Lowers protocol complexity
* Allows code re-use

* draft-tschofenig-teep-protocol-01 adds
* Dave Thaler as co-author
* Fixes several editorial bugs

Protocol Abbreviation

* |s TEEP-P good or should we just use TEEP Protocol ?
* |s calling it “teepee” as a nickname OK?

JSON/COSE Messaging

e Structure * QueryRequest (JSON)
type : 1// QueryRequest {"1": 1, "2": "a2", "3": [1, 2, 3], "3“:[1,2]}
token: "a2" Or
request information: {

1: attestation "type" : 1,

2: trusted_apps "token" : "a2",

3: extensions "request" : [1,2,3],

4: suit commands "cipher_suite" : [0,1]

Ciphersuite : [0,1]]

Ciphersuite

A ciphersuite consists of an AEAD algorithm, a HMAC algorithm, and a signature
algorithm. Each ciphersuite is identified with an integer value, which corresponds to an
|ANA registered ciphersuite. This document specifies two ciphersuites.

* What algorithms should be in the list?
* What should be mandatory to implement?
(Details about the algorithm combination depends on other factors.)

Value | Ciphersuite

0 | AES-CCM-16-64-128, HMAC 256/256, X25519, EdDSA
1 | AES-CCM-16-64-128, HMAC 256/256, P-256, ES256

Message Protection: Encryption?

QueryRequest Request field, ciphersuite list, nonce, version list, OCSP data
QueryResponse EAT*, TA list, supported extensions, selected ciphersuite + version
TrustedApplnstall Manifest** (or list of manifests)

TrustedAppDelete TA List

Success Success Code

Failure Error code,

*. EAT token is signed by low level software on device.
**. The manifest is e2e protected and signed by author. The manifest may have an encrypted

content attached or may reference encrypted content.

Message Protection: Symmetric Key?

QueryRequest Signed by TAM
QueryResponse Signed with device key
TrustedApplnstall MACed
TrustedAppDelete MACed

Success MACed

Failure MACed

Where could the symmetric key come from? Key transport - as defined in OTrP

But is it useful? Symmetric keys are typically used for performance improvements. Not many messages
are exchanged to begin with

Certificates and Chains

* Certificate and certificate chain (up to but excluding trust anchor) is
communicated as part of COSE/JOSE header.

* At least needed for QueryRequest, which conveys the TAM
certificate/certificate chain to the TEEP Agent)

* Not always needed (assuming the TEEP Agent caches data).

* Assumption is that there is no specific work that needs to be done at
the TEEP Protocol level.

SUIT Commands

The SUIT manifest supports optional parameters and optional commands.

Commands: Parameters:
- Set Current Dependency (setd)
- Set Parameters (setp) - Image Size
- Process Dependency (pdep)
- Run (run) - URI
- Fetch (getc) _ .
- Use Before (ubf) StrICt Order
- Check Component Offset (cco) - Sof-t Fa”ure
- Check Device Identifier (cdid)]
- Check Image Not Match (nimg) - Device ID
- Check Minimum Battery (minb) .
- Check Update Authorised (auth) B Encryptlon Info
- Check Version () ol . .
] Ab:t (air:t')o e Addltwﬁﬁlaﬂlédﬁflﬂessmn algorithms.
- Try Each (try) - Source Component .
- Copy (copy) The SUIT manifest already assigns numerical values to all the
- Swap (swap) par'ar”&!alls'%gection 7.6) & commands (=conditions and
- Wait For Event (wfe) . .
directives).

- Run Sequence (srun) mandatory component set
- Run with Arguments (arun)

Next Steps

* Update draft based on discussion

e Add examples in JSON (based on Hackathon feedback) and COSE
* Prototyping

* Should we plan a virtual interim meeting/conference call?

	Slide 1
	History
	Protocol Abbreviation
	JSON/COSE Messaging
	Ciphersuite
	Message Protection: Encryption?
	Message Protection: Symmetric Key?
	Certificates and Chains
	SUIT Commands
	Next Steps

