
TLS 1.3 Extended Key Schedule

draft-jhoyla-tls-extended-key-schedule-00
Jonathan Hoyland, Christopher A. Wood

IETF 106 - TLS WG - Singapore

Overview
TLS 1.3 has very carefully defined properties

Is there a need for new / different / stronger properties?

● Privacy properties for the ClientHello
● Hybrid Key Exchange

Can we achieve new / different / stronger properties without breaking anything?

● Non-trivial to get new properties without touching the key schedule
● Important that we don’t create new attack surface

Key Schedule Extension Use Cases
Hybrid key exchange

ESNI

External PSK Importers

Semi-static DH

We need an extensible framework
All the drafts mentioned want to modify the key schedule...

… in mutually incompatible ways

Generally with limited security analysis, especially of the properties when used
with other key schedule modifications

This draft attempts to do two things
1. Capture the work already done on key schedule changes

2. Provide a framework for using these changes in a consistent, secure, and
composable way

PSK secret extension

Handshake secret extension

Master secret extension

TLS 1.3’s Expand Step
Derive-Secret(Secret, Label, Messages) =

 HKDF-Expand(Secret,

 “tls13 ” + Label + Hash(Messages),

 Hash.length)

A KDF has two functions

● Extract - a randomness extractor

● Expand - a pseudorandom generator

These functions do different things:

● Extract takes imperfect randomness and “extracts” uniform randomness

● Expand takes a pseudorandom key and “expands” it into a number of
cryptographically unrelated keys

TLS 1.3 uses a Hash-based Key Derivation Function (HKDF)

Proposed Changes

1. PSK Extension
Current:

Proposed:

We can bind extra information to the handshake

● Analogous to TLS Exporter interface
● We can layer TLS on top of other protocols

Doesn’t affect the current security proofs*

● Derive-secret is an HKDF-Expand
● Assume that the key space for these new labels is computationally disjoint

(i.e. negligible probability of collisions)

What does this give us?

*Analysis underway

2. Handshake Secret Extension
Add an extra “Expand - Extract”

Attempt to isolate the injected material from the input

Inputs are injected in a fixed order

Extension Points
Make an IANA registry that fixes the order of
injection

We can add new secrets to the handshake

● Encrypted ClientHello extensions
● Add quantum-safe secrets without giving up classical crypto

Limits an attacker’s ability to bias the output key

● If there is no PSK and a weak DH key then a malicious input may be able to
bias the Handshake Secret

What does this give us?

Alternative design - Stebila Comb-KDF-1
(+) Simpler to implement

(+) Can use the dual-PRF property of
HKDF-Extract

(-) Key schedule no longer linear

(-) Less flexible

Further Questions
Do we want to extend the Master Secret?

Should we just concatenate the injected secrets?

How worried should we be about the number of new hash invocations?

How should we handle extension negotiation?

● Should the client produce a single PSK?
● A group of PSKs?
● Rely on HelloRetry if the server wants to pick and chose?

Interest in adoption?

Backup

Hash-based Key Derivation Function
● An HKDF takes four arguments:

● HKDF(XTS, SKM, CTXinfo, L)

○ XTS - an eXTractor Salt

○ SKM - the Source Key Material

○ CTXinfo - a ConTeXt value that is bound to the output key

○ L - the desired length of the output

HKDF-Extract(XTS, SKM) -> PRK

HKDF-Expand(PRK, CTXinfo, L) -> OKM

Summary
● Extract “cleans” or “smooths” the random input

● Expand takes “clean” randomness and produces separated keys

