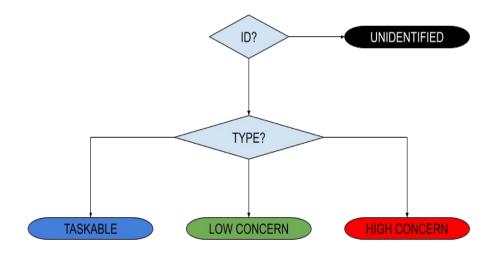


IETF 106 Birds of a Feather 2019 NOV 19 Trustworthy Multipurpose Remote Identification: draft-card-tmrid-uas-00

Stu Card, Bob Moskowitz, Adam Wiethuechter

Extending locator/identifier split & strong authentication techniques to identify physically nearby objects


Unmanned Aircraft System (UAS) Remote Identification (RID)

- Need means to identify nearby observed Unmanned Aircraft (UA) complicated by small size, hi speed (relative to size), remote operation, autonomy...
- Urgent: US FAA Notice of Proposed Rule Making (NPRM) this December
- ASTM F38.02 WK65041 new standard: OpenDroneID messages / multi transports
 - Network: from UAS (e.g. via LTE) or proxy (e.g. operator phone) via Internet to local observer phone
 - Broadcast: Bluetooth 4 / 5 & WiFi beacons (short packets!) direct to observer phone [w/o Internet]
- Initial ASTM standard falls short in making UAS RID information *immediately actionable*:
 - trustworthy
 - show whether operator is trusted, even if observer lacks Internet
 - enable instant O2P & M2M secure comms, if endpoints have Internet
- Aviators familiar w/radio comms, not networking; IETF could help
 - leverage existing Internet services/infrastructure/protocols (e.g. WHOIS/RDAP, DNS, HIP)
 - strengthen authentication, balance operator privacy w/genuine Need To Know
 - generalize to support V2X, self-separation, collision avoidance
- (UA physical location : UA ID) ~ (host logical location (IP) : host ID) we have prototyped & flown a HIP based extension to OpenDroneID @NY UAS Test Site

UAS Remote ID is <u>CRITICAL</u> for UAS Traffic Management (UTM)

- Observing UA at a particular location, want to learn WHO
 - ⁻ from which we can look up WHAT, WHY, "friendly", etc.
- Relevant for many entities for various reasons
 - ATC, Public Safety Officials, Homeland Security, General Public, Private Security Personnel, Drone Operators...
 - V2X, C2, coordinated separation / collision avoidance, mission...

ASTM F38.02 UAS Network Remote ID

Uses various Internet media

Typically LTE

Net-RID Service Provider (SP)

Gather data from connected UAS & other sources

Net-RID Display Provider (DP)

Connection point for RID app

Aggregate data that user requests for a given area

SP & DP can be co-located or not, same corp. or not

UAS Service Supplier is expected to be SP only or both

ASTM F.38.02 UAS Broadcast Remote ID

- One-way transmissions
 - UA to Observer devices w/RID app
- Short range media
 - Bluetooth 4.X beacon & 5 extended advertisement
 - Wifi w/Neighbor Awareness Networking (NAN)

V2X Applications

- Remote ID itself as an app (vs enabling technology)
- Platform
 - Command & Control
 - Detect And Avoid (DAA) "self separation"
 - Collision Avoidance
- Payload
 - Mission apps, e.g. remote sensing

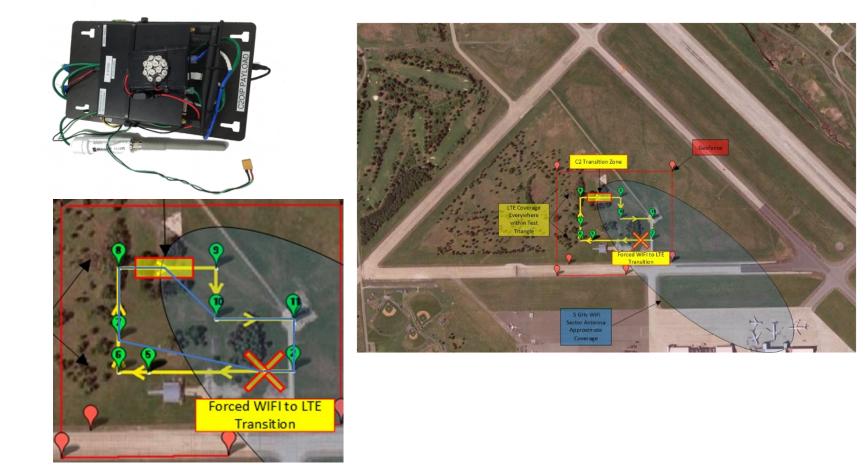
Aerial Internet Weaknesses

- Today's Internet has significant weaknesses in
 - Mobility
 - Multicast
 - Multihoming
 - Management
 - Quality of Service
 - Security
- Aero wireless networking compounds these...

Some network issues compounded by aero comms

- Each non-trivial aircraft has multiple radios of different types
- Many types of radios hand off between base stations frequently
- Most open standard protocols are challenged by
 - Low data rates
 - High error (or loss) rates
 - Long latencies
 - Link asymmetry
 - Rapid wide variation in channel characteristics
- Security protocols requiring cryptographic handshakes are further challenged by
 - Limited on-board processing power
 - Brief contact time w/fast moving platforms
- Enormous safety implications (e.g. remotely crash my drone)
- Aggregation of enough public information enables inference of sensitive information about the physical world (e.g. air operations routes & schedules)

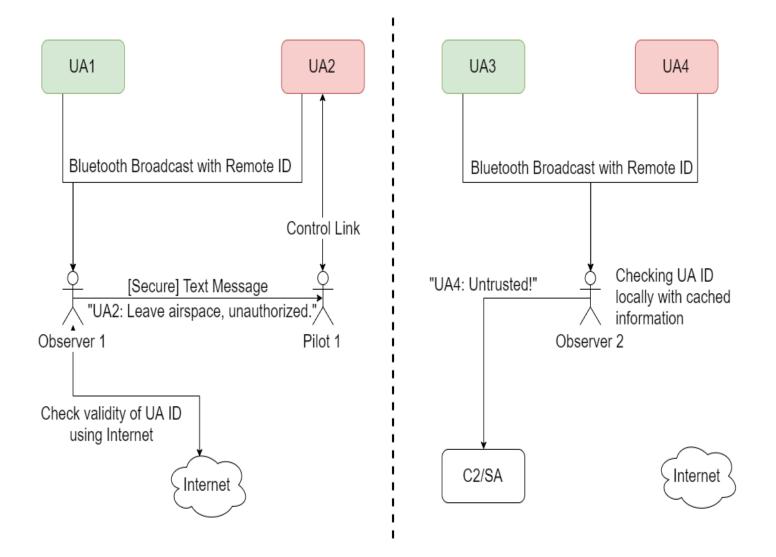
1st Mitigation for C2: Multiple Wireless Links


- Aviation authorities will require at least 2 largely independent radio systems for reliability
- Multiple links also greatly benefit security
 - jammer must jam all your links to deny you service
 - info can be spread over N links so an eavesdropper must listen on at least M of them to learn anything
- 3 links are obvious in many cases today
 - WiFi or other RF LOS coverage built to suit
 - LTE, w/extensive coverage already built out
 - Iridium or other global coverage systems
- End systems & users
 - Should know what network Quality of Service they currently can expect
 - But should *not* need to know which link[s] reach a given UA at a given time

2nd Mitigation for C2: Strong ID Based Security

- Aircraft *identity* is distinct from its physical (spatial) & logical (network) *locations*
 - Aircraft identifiers should be distinct from locators (e.g. current IP addresses)
 - Security associations should belong to identity, not location, thus remain unaffected by handoff between radio base stations
- IETF Host Identity Protocol (HIP) offers
 - identifier / locator de-conflation as justified above
 - identifiers corresponding to crypto public keys
 - IPSEC interoperability w/automatic dynamic setup
 - multi-homing (multiple concurrent network connections)
 - smooth make-before-break handoff between base stations

Cyber Resilient UAS Comms


- Demonstrated maintaining control of UAS w/HIP-based robust/secure C2.
- Assured C2 over multiple links (WiFi & LTE) w/automatic failover/fallback.
- Strongly encrypted communications between authenticated endpoints w/persistent IDs.

Our UAS RID approach

- Adopt & extend existing standards
 - ICAO, RTCA, CAAs inc. FAA, USAF...
 - FAA expected to adopt ASTM draft... but security & threat model not addressed in draft!
- Bring in the Internet Engineering Task Force (IETF)
 - large diverse base of relevant expertise, esp. network security
 - mapping host ID -> logical location (IP address) is similar to inverse mapping physical location -> UAS ID, so extending IETF standard Host Identity Protocol (HIP) & proposing it via ASTM
 - w/Internet connectivity (Network RID), also facilitates dynamic establishment of encrypted, mutually authenticated secure comms between observer & UAS (or its operator)
 - w/standardized vetting by hierarchical registries, makes UAS ID & any other cryptographically signed claims trustworthy even w/o Internet connectivity (Broadcast RID)

We need it to be immediately actionable!

Trustworthy Multipurpose Remote Identification (tmrid)

- UAS RID information must be immediately actionable:
 - Trustworthy
 - Enable instant O2P & M2M secure comms, if endpoints have Internet
 - Show whether operator is trusted, even if observer lacks Internet
 - Yet privacy must be maintained when it has not been forfeited by the UAS operator through clueless, careless or criminal actions
- IETF protocols can complement ASTM F38.02 to achieve the above plus:
 - support a variety of apps related to UAS RID (e.g. C2, DAA, V2X)
 - leverage existing Internet services/infrastructure (e.g. DNS, RDAP/WHOIS) to support UAS RID
 - we have prototyped & flown initial tmrid @NY UAS Test Site
- ASTM & IETF standards both need minor tweaks
 - we met w/ASTM 2 weeks ago

HIP benefits for Remote ID

RFCs 4423[bis], 7343 (ORCHID), 7401, 8002 - 8005

- General
 - Give each device a persistent identifier that remains the same across IP address changes
 - enable persistent TCP connections, security associations, etc.
 - Give all packets a provenance
 - "Secure Mobile Architecture" (Boeing, Lockheed-Martin, et al)
 - see R. Paine's Beyond HIP: The End to Hacking As We Know It
 - Auto-configure IPsec VPNs (frustrating to do manually)
- Aero networking
 - Associate persistent identifier with aircraft tail #
 - Multihoming for make-before-break smooth handoff

Using HIP for RID

Network RID can leverage all of HIP advantages

Persistent ID of all interconnected devices (UAS, USS)

Automagic IPSec ESP tunnels from Observer to Pilot etc.

Broadcast RID

Trustworthy (verifiable) persistent ID using HIT

Observer can classify operator as trusted or not based on which HHIT registry cert is provided, even w/o current Internet connectivity

Beyond HIP: DNS, RDAP/WHOIS (registry providers, registrars)...