
Design Considerations for Low Power Internet Protocols

Hudson Ayers, Paul Crews, Hubert Teo, Conor McAvity, Amit Levy †, Philip Levis

Stanford University, †Princeton University

July 29, 2020

1 / 21



Introduction

Outline

Finding 1
6LoWPAN implementations do not interoperate

Finding 2
This is in large part because of code size issues

Finding 3
Traditional protocol design principles lead to bloated code

Contribution
Low-power protocol design principles can solve this

2 / 21



Introduction

Outline

Finding 1
6LoWPAN implementations do not interoperate

Finding 2
This is in large part because of code size issues

Finding 3
Traditional protocol design principles lead to bloated code

Contribution
Low-power protocol design principles can solve this

2 / 21



Introduction

Outline

Finding 1
6LoWPAN implementations do not interoperate

Finding 2
This is in large part because of code size issues

Finding 3
Traditional protocol design principles lead to bloated code

Contribution
Low-power protocol design principles can solve this

2 / 21



Introduction

Outline

Finding 1
6LoWPAN implementations do not interoperate

Finding 2
This is in large part because of code size issues

Finding 3
Traditional protocol design principles lead to bloated code

Contribution
Low-power protocol design principles can solve this

2 / 21



Introduction

Outline

Evaluation 1
Modified version of 6LoWPAN, based on these principles

Evaluation 2
Implementation of modified 6LoWPAN in an embedded OS

Evaluation 3
Compare modified and unmodified versions of 6LoWPAN

3 / 21



Introduction

Outline

Evaluation 1
Modified version of 6LoWPAN, based on these principles

Evaluation 2
Implementation of modified 6LoWPAN in an embedded OS

Evaluation 3
Compare modified and unmodified versions of 6LoWPAN

3 / 21



Introduction

Outline

Evaluation 1
Modified version of 6LoWPAN, based on these principles

Evaluation 2
Implementation of modified 6LoWPAN in an embedded OS

Evaluation 3
Compare modified and unmodified versions of 6LoWPAN

3 / 21



Low-Power IP Today

6LoWPAN Interoperability

We conducted an interoperability test between 6 open source 6LoWPAN implementations

4 / 21



Low-Power IP Today

6LoWPAN Interoperability

Each implementation could communicate with the broader internet! But...

In many cases, implementations could not communicate with each other.
• Antithetical to the goals of IP!

Failure Manifestation
Silent network layer drops; despite link layer acknowledgements

5 / 21



Low-Power IP Today

6LoWPAN Interoperability

Each implementation could communicate with the broader internet! But...

In many cases, implementations could not communicate with each other.
• Antithetical to the goals of IP!

Failure Manifestation
Silent network layer drops; despite link layer acknowledgements

5 / 21



Low-Power IP Today

6LoWPAN Interoperability

Each implementation could communicate with the broader internet! But...

In many cases, implementations could not communicate with each other.
• Antithetical to the goals of IP!

Failure Manifestation
Silent network layer drops; despite link layer acknowledgements

5 / 21



Low-Power IP Today

Complete Interoperability Matrix

Sender
Receiver

Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Contiki
Contiki-NG
OpenThread

Riot
Arm Mbed
TinyOS

For each pairing, we found valid (per the standard) packets that were generated by one stack
but were dropped by the other.

6 / 21



Low-Power IP Today

Digging in: Interoperability per-feature

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 X X X X X
6LoWPAN Fragmentation X X X X X X
1280 byte packets X X X X X X
Dispatch_IPHC header prefix X X X X X X
IPv6 Stateless Address Compression X X X X X X
Stateless multicast address compression X X X X X X
802.15.4 16 bit short address support X X X X X
IPv6 Address Autoconfiguration X X X X X X
IPv6 Stateful Address Compression X X X X X X
IPv6 Stateful multicast address compression X X X
IPv6 Traffic Class and Flow label compression X X X X X X
IPv6 NH Compression: Ipv6 (tunneled) X X X
IPv6 NH Compression: UDP X X X X X X
UDP port compression X X X X X X
UDP checksum elision X
Compression + headers past first fragment X X
Compression of IPv6 Extension Headers ~ ~ X
Mesh Header X
Broadcast Header X
Regular IPv6 ND X X X X ~
RFC 6775 6LoWPAN ND X X
RFC 7400 Generic Header Compression

~ = Partial Support

7 / 21



Low-Power IP Today

Digging in: Interoperability per-feature

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 X X X X X
6LoWPAN Fragmentation X X X X X X
1280 byte packets X X X X X X
Dispatch_IPHC header prefix X X X X X X
IPv6 Stateless Address Compression X X X X X X
Stateless multicast address compression X X X X X X
802.15.4 16 bit short address support X X X X X
IPv6 Address Autoconfiguration X X X X X X
IPv6 Stateful Address Compression X X X X X X
IPv6 Stateful multicast address compression X X X
IPv6 Traffic Class and Flow label compression X X X X X X
IPv6 NH Compression: Ipv6 (tunneled) X X X
IPv6 NH Compression: UDP X X X X X X
UDP port compression X X X X X X
UDP checksum elision X
Compression + headers past first fragment X X
Compression of IPv6 Extension Headers ~ ~ X
Mesh Header X
Broadcast Header X
Regular IPv6 ND X X X X ~
RFC 6775 6LoWPAN ND X X
RFC 7400 Generic Header Compression

~ = Partial Support

7 / 21



Low-Power IP Today

Digging in: Interoperability per-feature

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 X X X X X
6LoWPAN Fragmentation X X X X X X
1280 byte packets X X X X X X
Dispatch_IPHC header prefix X X X X X X
IPv6 Stateless Address Compression X X X X X X
Stateless multicast address compression X X X X X X
802.15.4 16 bit short address support X X X X X
IPv6 Address Autoconfiguration X X X X X X
IPv6 Stateful Address Compression X X X X X X
IPv6 Stateful multicast address compression X X X
IPv6 Traffic Class and Flow label compression X X X X X X
IPv6 NH Compression: Ipv6 (tunneled) X X X
IPv6 NH Compression: UDP X X X X X X
UDP port compression X X X X X X
UDP checksum elision X
Compression + headers past first fragment X X
Compression of IPv6 Extension Headers ~ ~ X
Mesh Header X
Broadcast Header X
Regular IPv6 ND X X X X ~
RFC 6775 6LoWPAN ND X X
RFC 7400 Generic Header Compression

~ = Partial Support

7 / 21



Low-Power IP Today

Digging in: Interoperability per-feature

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 X X X X X
6LoWPAN Fragmentation X X X X X X
1280 byte packets X X X X X X
Dispatch_IPHC header prefix X X X X X X
IPv6 Stateless Address Compression X X X X X X
Stateless multicast address compression X X X X X X
802.15.4 16 bit short address support X X X X X
IPv6 Address Autoconfiguration X X X X X X
IPv6 Stateful Address Compression X X X X X X
IPv6 Stateful multicast address compression X X X
IPv6 Traffic Class and Flow label compression X X X X X X
IPv6 NH Compression: Ipv6 (tunneled) X X X
IPv6 NH Compression: UDP X X X X X X
UDP port compression X X X X X X
UDP checksum elision
Compression + headers past first fragment X X
Compression of IPv6 Extension Headers ~ ~ X X
Mesh Header X
Broadcast Header X
Regular IPv6 ND X X X X ~
RFC 6775 6LoWPAN ND X X
RFC 7400 Generic Header Compression

~ = Partial Support

7 / 21



Low-Power IP Today

Digging in: Interoperability per-feature

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 X X X X X
6LoWPAN Fragmentation X X X X X X
1280 byte packets X X X X X X
Dispatch_IPHC header prefix X X X X X X
IPv6 Stateless Address Compression X X X X X X
Stateless multicast address compression X X X X X X
802.15.4 16 bit short address support X X X X X
IPv6 Address Autoconfiguration X X X X X X
IPv6 Stateful Address Compression X X X X X X
IPv6 Stateful multicast address compression X X X
IPv6 Traffic Class and Flow label compression X X X X X X
IPv6 NH Compression: Ipv6 (tunneled) X X X
IPv6 NH Compression: UDP X X X X X X
UDP port compression X X X X X X
UDP checksum elision
Compression + headers past first fragment X X
Compression of IPv6 Extension Headers ~ ~ X X
Mesh Header X
Broadcast Header X
Regular IPv6 ND X X X X ~
RFC 6775 6LoWPAN ND X X
RFC 7400 Generic Header Compression

~ = Partial Support

7 / 21



Low-Power IP Today

Digging in: Interoperability per-feature

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 X X X X X
6LoWPAN Fragmentation X X X X X X
1280 byte packets X X X X X X
Dispatch_IPHC header prefix X X X X X X
IPv6 Stateless Address Compression X X X X X X
Stateless multicast address compression X X X X X X
802.15.4 16 bit short address support X X X X X
IPv6 Address Autoconfiguration X X X X X X
IPv6 Stateful Address Compression X X X X X X
IPv6 Stateful multicast address compression X X X
IPv6 Traffic Class and Flow label compression X X X X X X
IPv6 NH Compression: Ipv6 (tunneled) X X X
IPv6 NH Compression: UDP X X X X X X
UDP port compression X X X X X X
UDP checksum elision
Compression + headers past first fragment X X
Compression of IPv6 Extension Headers ~ ~ X
Mesh Header X X
Broadcast Header X
Regular IPv6 ND X X X X ~
RFC 6775 6LoWPAN ND X X
RFC 7400 Generic Header Compression

~ = Partial Support

7 / 21



Low-Power IP Today

Digging in: Interoperability per-feature

Feature Stack
Contiki Contiki-NG OpenThread Riot Arm Mbed TinyOS

Uncompressed IPv6 X X X X X
6LoWPAN Fragmentation X X X X X X
1280 byte packets X X X X X X
Dispatch_IPHC header prefix X X X X X X
IPv6 Stateless Address Compression X X X X X X
Stateless multicast address compression X X X X X X
802.15.4 16 bit short address support X X X X X
IPv6 Address Autoconfiguration X X X X X X
IPv6 Stateful Address Compression X X X X X X
IPv6 Stateful multicast address compression X X X
IPv6 Traffic Class and Flow label compression X X X X X X
IPv6 NH Compression: Ipv6 (tunneled) X X X
IPv6 NH Compression: UDP X X X X X X
UDP port compression X X X X X X
UDP checksum elision
Compression + headers past first fragment X X
Compression of IPv6 Extension Headers ~ ~ X
Mesh Header X X ~
Broadcast Header X
Regular IPv6 ND X X X X ~
RFC 6775 6LoWPAN ND X X
RFC 7400 Generic Header Compression

~ = Partial Support

7 / 21



Low-Power IP Today

Why?

8 / 21



Low-Power IP Today

Flash size varies widely across IoT Platforms

IoT Platform Code (kB) Year
EMB-WMB 64 2012
Zolertia Z1 92 2013
TI CC2650 128 2015
NXP MKW40Z 160 2015
SAMR21 XPro 256 2014
Nordic NRF52840 DK 512 2018

• OSes must support variety of applications
and boards with different constraints

• This includes severely restricted low-cost
or low-energy boards

• In research code size is rarely an issue; in
real-world deployments it is

9 / 21



Low-Power IP Today

6LoWPAN Code Size is significant

TinyOS’s whole-program optimization model precluded separating out components

These numbers represent strict lower bounds, as they were conservatively calculated

10 / 21



Low-Power IP Today

Code Size, Energy, and Traditional Principles

• Advanced MAC/PHY layers, compression, tracking network state, etc. saves energy, and
are very important for some deployments

• These techniques require larger and more complex code
• If protocols focus too much on saving energy, it can ironically force applications using that

protocol to require more expensive, power hungry microcontrollers.
• But traditional protocol principles like Postel’s Law – “Be liberal in what you accept, and

conservative in what you send” – require receivers support all non-optional complexity in a
protocol

11 / 21



Design Principles

Low Power Protocol Design Principles

Principle 1: Capability Spectrum
Low power protocols should support both ultra-low energy devices as well as devices with very
limited code space. Rather than all devices paying the code size costs of complex energy
optimizations, protocols should support a linear spectrum of device capabilities.

Principle 2: Capability Discovery
There should be a way for devices to determine what capability level to communicate with.

Principle 3: Explicit and Finite Bounds
Protocols must specify explicit and reasonable bounds on recursive or variable features so
implementations can bound RAM use.

These may seem obvious, but low power protocols today do not do these things!

12 / 21



Design Principles

Low Power Protocol Design Principles

Principle 1: Capability Spectrum
Low power protocols should support both ultra-low energy devices as well as devices with very
limited code space. Rather than all devices paying the code size costs of complex energy
optimizations, protocols should support a linear spectrum of device capabilities.

Principle 2: Capability Discovery
There should be a way for devices to determine what capability level to communicate with.

Principle 3: Explicit and Finite Bounds
Protocols must specify explicit and reasonable bounds on recursive or variable features so
implementations can bound RAM use.

These may seem obvious, but low power protocols today do not do these things!

12 / 21



Design Principles

Low Power Protocol Design Principles

Principle 1: Capability Spectrum
Low power protocols should support both ultra-low energy devices as well as devices with very
limited code space. Rather than all devices paying the code size costs of complex energy
optimizations, protocols should support a linear spectrum of device capabilities.

Principle 2: Capability Discovery
There should be a way for devices to determine what capability level to communicate with.

Principle 3: Explicit and Finite Bounds
Protocols must specify explicit and reasonable bounds on recursive or variable features so
implementations can bound RAM use.

These may seem obvious, but low power protocols today do not do these things!

12 / 21



Design Principles

Low Power Protocol Design Principles

Principle 1: Capability Spectrum
Low power protocols should support both ultra-low energy devices as well as devices with very
limited code space. Rather than all devices paying the code size costs of complex energy
optimizations, protocols should support a linear spectrum of device capabilities.

Principle 2: Capability Discovery
There should be a way for devices to determine what capability level to communicate with.

Principle 3: Explicit and Finite Bounds
Protocols must specify explicit and reasonable bounds on recursive or variable features so
implementations can bound RAM use.

These may seem obvious, but low power protocols today do not do these things!

12 / 21



Design Principles

Low Power Protocol Design Principles

Principle 1: Capability Spectrum
Low power protocols should support both ultra-low energy devices as well as devices with very
limited code space. Rather than all devices paying the code size costs of complex energy
optimizations, protocols should support a linear spectrum of device capabilities.

Principle 2: Capability Discovery
There should be a way for devices to determine what capability level to communicate with.

Principle 3: Explicit and Finite Bounds
Protocols must specify explicit and reasonable bounds on recursive or variable features so
implementations can bound RAM use.

These may seem obvious, but low power protocols today do not do these things!

12 / 21



Evaluation

Evaluating the Principles

• Can capability levels provide a good range of implementation complexity?
• What is the overhead of capability discovery?
• Is a linear capability spectrum really better than arbitrary feature selection?

Approach: Apply the principles to 6LoWPAN

13 / 21



Evaluation

Applying to 6LoWPAN

Principle 1: Capability Spectrum
• Break down individual features of

6LoWPAN into 6 capability levels
• Lower levels prioritize features

with high energy savings relative
to added complexity

Capability Basic Description / Added Features
Level 0 Uncompressed IPv6 + ability to send ICMP errors

• Uncompressed IPv6
• 6LoWPAN Fragmentation (Fragment Header)
• 1280 Byte Packets
• Stateless decompression of source addresses

Level 1 IPv6 Compression Basics + Stateless Addr Compression
• Support for the Dispatch_IPHC Header Prefix
• Correctly handle elision of IPv6 length and version
• Stateless compression of all unicast addresses
• Stateless compression of multicast addresses
• Compression + 16 bit link-layer addresses
• IPv6 address autoconfiguration

Level 2 Stateful IPv6 Address Compression
• Stateful compression of unicast addresses
• Stateful compression of multicast addresses

14 / 21



Evaluation

Applying to 6LoWPAN

Principle 1: Capability Spectrum
• Break down individual features of

6LoWPAN into 6 capability levels
• Lower levels prioritize features

with high energy savings relative
to added complexity

Capability Basic Description / Added Features
Level 3 IPv6 Traffic Class and Flow Label Compression

• Traffic Class compression
• Flow Label Compression
• Hop Limit Compression

Level 4 Next Header Compression + UDP Port Compression
• Handle Tunneled IPv6 correctly
• Handle the compression of the UDP Next Header
• Correctly handle elision of the UDP length field
• Correctly handle the compression of UDP ports
• Handle headers past the first fragment, when first

fragment compressed.

Level 5 Entire Specification
(all routers)

• Support the broadcast header and the mesh header
• Support compression of all IPv6 Extension headers

14 / 21



Evaluation

Applying to 6LoWPAN

Principle 2: Capability Discovery

• New ND Option in Router Soliciations and
Neighbour Advertisements

• Nodes can store capability levels alongside link layer
addresses

• New ICMPv6 message type: 6LoWPAN Class
Unsupported

• Robust error reporting is vital to interoperability
• ICMP reporting prevents silent drops

15 / 21



Evaluation

Applying to 6LoWPAN

Principle 3: Provide reasonable
bounds

• No recursive decompression of tunneled IPv6
• Hard limit on maximum growth from header

decompression
• Details in draft!

16 / 21



Evaluation

Implementation

Principled 6LoWPAN (P6LoWPAN): Implementing these changes to 6LoWPAN

• Based on Contiki-NG’s 6LoWPAN stack
• Add compile time flags to build stack at each capability level
• Add code for ICMP errors when packet decoding fails
• Add code for sending and storing capability levels
• Required changing about 500 lines of code

17 / 21



Evaluation

Can capability levels provide a good range of implementation complexity?

Table: 6LoWPAN code size of different capabilities levels in Contiki-NG.

Capability Code Size (kB) Increase (kB)
Level 0 3.2 -
Level 1 4.2 1.0
Level 2 4.8 0.6
Level 3 5.1 0.3
Level 4 5.6 0.5
Level 5 6.2 0.6

Takeaway

The spectrum spans a nearly 100% increase in code size.

18 / 21



Evaluation

What is the overhead of capability discovery?

Table: The cost of implementing capability discovery in Contiki-NG

Capability 6LoWPAN Code Size (kB)
Base w/Discovery Increase

Level 0 3.2 3.4 188 bytes
Level 1 4.2 4.4 260 bytes
Level 2 4.8 5.2 388 bytes
Level 3 5.1 5.4 340 bytes
Level 4 5.6 5.9 296 bytes
Level 5 6.2 6.3 172 bytes

Takeaway

Capability discovery costs less than 5% of the total 6LoWPAN size; the maximum size
reduction from choosing a lower capability level is 10x the discovery cost.

19 / 21



Evaluation

Is a linear capability spectrum really better than arbitrary feature selection?

FLEX-6LoWPAN: We modified P6LoWPAN to allow implementations to select arbitrary
features

Table: Resource requirements for modified 6LoWPAN in Contiki-NG, at equivalent of capability level 4

– Linear Spectrum Arbitrary Bitfield
6LoWPAN Code Size 5.9 kB 6.5 kB
RAM per neighbor 19 Bytes 22 Bytes
Typical ICMP message 12 Bytes 48 Bytes

Takeaway
Arbitrary feature selection has significant runtime costs, because low-capability nodes cannot
compress responses.

20 / 21



Conclusion

Conclusions

1 Low power interoperability is hard! Device deployments are forced to make tradeoffs
specific to their application requirements

2 Low power protocols must support different points in the spectrum of tradeoffs between
code size and energy use

3 We present three principles that can reframe the discussion around how low power
protocols are designed

4 Applying these principles to 6LoWPAN, we find that they enable a good range of
implementation complexity and introduce acceptably low overhead.

Thank you!

21 / 21



Appendix

1 / 3



Run Time Overhead - Neighbour Discovery

Best approximation of overhead is link-layer payload bits

C = Router Solicitation {RS}+Min. IP Hdr {2}+ Router Advertisement {104} +Min. IP Hdr {2}+

(Neighbor Solicitation {24}+ Neighbor Advertisement {NA}+ 2 ∗Min. IP Hdr {2}) ∗ N
Registration Options in first NS {24}+ Registration Options in first NA {16} (1)

where:

C = Minimum link-layer payload sent/received for ND

N = # of endpoints requiring address resolution

RS NA C (Total ND Cost)
6LoWPAN 20 24 168+ 52 ∗ N
P6LoWPAN 24 28 172+ 56 ∗ N
FLEX-6LoWPAN 28 32 176+ 60 ∗ N

2 / 3



Run Time Overhead - ICMP

• Overhead is one ICMP packet per failure between any two nodes
• link layer frame bits: Compressed Header Size + 4 bytes for Capability Option
• With linear spectrum, failures can only happen in one direction
• With arbitrary bitfield, failures can happen in both directions, so can’t compress IP header

in error message!
• Linear spectrum typical error payload: 12 bytes
• Arbitrary bitfield typical error payload: 48 bytes

3 / 3


	Introduction
	Low-Power IP Today
	Design Principles
	Evaluation
	Conclusion
	Appendix

