

An Upgrade to Benchmarking Methodology for Network Interconnect Devices

Gábor Lencse

Budapest University of Technology and Economics

Keiichi Shima

IIJ Innovation Institute

IETF 108, BMWG, July 27, 2020.

What can be updated?

- Recommendation to backport the novelties of RFC 8219 to RFC 2544
- Improved throughput and frame loss rate measurement procedures using individual frame timeout
- Requirement of statistically relevant number of tests
- An optional non-zero frame loss acceptance criterion for the throughput measurement procedure

Novelties of RFC 8219

- Compared to RFC 2544 and RFC 5180
 - New measurement procedures:
 - PDV: Packet Delay Variation
 - IPDV: Inter Packet Delay variation
 - Different summarizing functions
 - RFC 2544: average (a single number: oversimplification)
 - RFC 8219: median plus 1st and 99th percentiles
 - Higher statistical reliability
 - Requirement for at least 20 tests
 - Redefined Latency measurement procedure
 - At least 500 timestamps instead of a single one

Why not backporting?

- RFC 8219 is for IPv6 transition technologies.
- The new or redefined measurement procedures can be applied to any network interconnect devices, too.
- Let us update RFC 2544 to do so!
- There is a free software Tester that supports the new PDV, IPDV and the redefined Latency tests
 - siitperf (RFC 8219 compliant SIIT tester) can be configured to benchmark IPv4 or IPv6 routers, too.
 - https://github.com/lencsegabor/siitperf

Improved throughput measurements

- RFC 2544 throughput measurements procedure
 - counts the sent and received frames
 - "timeout" is 62s/2s for the first/last frame
 - It is usually OK for hardware forwarding devices
 - But may be a problem, if software solutions introduce (selective) high latencies
 - As shown by our experimental results: 100ms delay to 1% of the test frames caused more than 50% decrease in the throughput of HTTP download

G. Lencse, K. Shima, and A. Kovács, "Gaming with the Throughput and the Latency Benchmarking Measurement Procedures of RFC 2544", *International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems*, vol. 9, no. 2, pp. 10-17, 2020, DOI: 10.11601/ijates.v9i2.288

Improved throughput measurements

- Recommended solution
 - An advanced throughput measurement procedure that checks the timeout time (e.g. 10ms) for every single test frame
 - We have demonstrated its feasibility with sitperf
 G. Lencse, "Design and Implementation of a Software Tester for Benchmarking Stateless NAT64 Gateways", accepted for IEICE Transactions on Communications, available: http://www.hit.bme.hu/~lencse/publications/IEICE-2020-siitperf-revised.pdf
 - The value of the "frame timeout" is subject to research
 - Question: Does it make a significant difference?
 - https://mailarchive.ietf.org/arch/msg/bmwg/50qoL0gxTEKGU6CkUwPIf8FO-hc/
- The same can be applied to frame loss rate tests, too.

Requirement of statistically relevant number of tests

- RFC 8219 mentions at four different places that the tests must be repeated at least 20 times:
 - latency (Section 7.2)
 - packet delay variation (Section 7.3.1)
 - inter packet delay variation (Section 7.3.2)
 - DNS64 performance (Section 9.2).
- On the one hand, a similar guideline could be nice for the throughput test, too.
- On the other hand, the binary search is time consuming: perhaps 20 repetitions is too many.

Requirement of statistically relevant number of tests

- Our recommendation:
 - To develop an algorithm that checks the statistical properties of the results of the tests
 - It may stop before 20 repetitions, if the results are consistent,
 - it may require more than 20 repetitions, if the results are scattered.

An optional non-zero frame loss acceptance criterion for the throughput measurement procedure

Arguments:

- Packet forwarding is often implemented in software.
 It is not feasible to require 0% frame loss.
- Applications usually tolerate some low frame loss rates (e.g. 0.01%)
- Commercial Testers usually allow to specify "Loss Tolerance"
- It is better to allow such measurements and to require stating the applied loss tolerance rate.

Thank you for listening!

The Internet Draft is available:

https://tools.ietf.org/html/draft-lencse-bmwg-rfc2544-bis-00

- All comments are welcome!
- Our question:
 - Do you consider any of our recommendations useful?