
IETF 108

Constrained RESTful Environments
WG (core)

1

Chairs:
Jaime Jiménez <jaime.jimenez@ericsson.com>
Marco Tiloca <marco.tiloca@ri.se>

Mailing list:
core@ietf.org

Jabber:
core@jabber.ietf.org

• We assume people have read the drafts

• Meetings serve to advance difficult issues by making good use of
face-to-face communications

• Note Well: Be aware of the IPR principles, according to RFC 8179
and its updates

2

� Blue sheets
� Jabber Scribe(s)
� Note Taker(s)

Note Well

https://www.ietf.org/about/note-well/

Any submission to the IETF intended by the Contributor for publication as all or part of an IETF Internet-Draft or RFC and any
statement made within the context of an IETF activity is considered an "IETF Contribution". Such statements include oral statements
in IETF sessions, as well as written and electronic communications made at any time or place, which are addressed to:

• The IETF plenary session
• The IESG, or any member thereof on behalf of the IESG
• Any IETF mailing list, including the IETF list itself, any working group or design team list, or any other list functioning under

IETF auspices
• Any IETF working group or portion thereof
• Any Birds of a Feather (BOF) session
• The IAB or any member thereof on behalf of the IAB
• The RFC Editor or the Internet-Drafts function

All IETF Contributions are subject to the rules of RFC 5378 and RFC 8179.

Statements made outside of an IETF session, mailing list or other function, that are clearly not intended to be input to an IETF activity,
group or function, are not IETF Contributions in the context of this notice. Please consult RFC 5378 and RFC 8179 for details.

A participant in any IETF activity is deemed to accept all IETF rules of process, as documented in Best Current Practices RFCs and
IESG Statements.

A participant in any IETF activity acknowledges that written, audio and video records of meetings may be made and may be available
to the public.

https://www.ietf.org/about/note-well/
https://www.rfc-editor.org/info/rfc5378
https://www.rfc-editor.org/info/rfc8179
https://www.rfc-editor.org/info/rfc5378
https://www.rfc-editor.org/info/rfc8179

Tuesday (100 min)
• 14:10–14:20 Intro, Agenda, Status
• 14:20–14:25 Resource Directory
• 14:25–14:30 Echo-Request-Tag
• 14:30–14:40 CoRE Applications
• 14:40–14:50 Dynlink
• 14:50–15:10 SenML
• 15:10–15:25 Blockwise for DOTS
• 15:25–15:35 AIF
• 15:35–15:50 Flextime (EDHOC+OSCORE)

4

All times are in UTC

Friday (100 min)

5

All times are in UTC

• 14:10–14:15 Intro, Agenda
• 14:15–14:25 CoRECONF
• 14:25–15:30 Group Communication
• 15:30–15:50 Flextime

Agenda Bashing

Intro

Practicalities
• Use the queue request on Meetecho

• Use of queuing at core@jabber.ietf.org
• mic: to ask for relaying a question

• This meeting is recorded

• Bluesheets are automatically filled

mailto:core@jabber.ietf.org

senml-etch-07 à RFC 8790 !!
published 2020-06

senml-more-units-06 à RFC 8798 !!
published 2020-06

✓
✓

Published Documents

IESG Processing
• draft-ietf-core-resource-directory-25

In IESG Evaluation (Telechat: 20-08-13)
• draft-ietf-core-stateless-06

In IESG Evaluation::Revised I-D Needed

In Post-WGLC processing
• draft-ietf-core-dev-urn-07

On AD Evaluation::Revised I-D Needed
• draft-ietf-core-echo-request-tag-10

On Shepherd’s Writeup
• draft-ietf-core-oscore-groupcomm-09

WGLC comments to process

In WGLC
• draft-ietf-core-yang-cbor-13
• draft-ietf-core-comi-10
• draft-ietf-core-sid-14
• draft-ietf-core-yang-library-02

Ends on the 29th of July

Resource Directory

Resource Directory
draft-ietf-core-resource-directory

Zach Shelby, Michael Koster, Carsten Bormann, Peter van der Stok,
Christian Amsüss

2020-07-28

Since IETF107
Processing Secdir and Genart reviews

I Major change on Security Policies

“how” “what”

“rule” “options”

I Suggest Echo for amplification mitigation, and client identity in
simple registration

I Minor clarifications and editorial changes

Echo-Request-Tag

Echo, Request-Tag, and Token Processing
draft-ietf-core-echo-request-tag

Christian Amsüss, John Mattson, Göran Selander

2020-07-28

Since IETF104
Addressing WGLC- and post-WGLC reviews (Francesca, Marco, Klaus)

I 7252 update: RECOMMEND Echo for amplification mitigation

Give numbers:  3⇥ request (from QUIC)

practically: 152 octets free

I Echo: Allow short values

I Echo: Proxies may process it provided they don’t deteriorate freshness

I RT: Don’t claim to solve to all stateless proxy blockwise problems

I Structure: Introductions grouped with topics

I Improved privacy and security considerations

I Suggest concrete option numbers (twice. . .)

I Various wording

Problem Details

Problem details
draft-ietf-core-problem-details-01

Editorial

• Rebuilding content from the ground up:

• incrementally include what we are sure about

• leave out what we are not yet sure about

(re)structure

• Base - very small set of common fields

• Feature - extensions per use case (e.g.: tracing, log pipeline, 3rd party
error reporting, etc.)

CoRAL all the way

Naming protocol elements

Requirements
• https://github.com/core-wg/core-problem-details/issues/9

• size/compactness

• low barrier to entry

• stability

• private-public transitions

• popularity/familiarity to REST API developers

• we don't consider any existing solution that doesn't prevent collisions

https://github.com/core-wg/core-problem-details/issues/9
https://github.com/core-wg/core-problem-details/issues/9

Survey

• Very broad survey of ID schemes

• IANA (URI, ASN.1, YANG) , LwM2M, Bluetooth, IEEE, ISBN, DOI, DNS,
W3C DID, software packages (Go, .NET, Javascript), Twitter Snowflake,
etc.

• Work in progress…

Dynlink

draft-ietf-core-dynlink
IETF 108

Dynlink Changelog from versions -08 to -11

• Draft restructuring: introducing the observe attributes first, then
dynamic links and then the binding table implementation
• Incorporating feedback received for updates, corrections and

clarifications

Dynlink Ongoing Discussions (1/3)

• Draft -11 currently discusses notifications arising from setting the
observe attributes in terms of reporting values and message transfers
• Substantial editorial changes will be performed to alter the language

in order to reflect notifications as RESTful state changes and state
transfer

Dynlink Ongoing Discussions (2/3)

• The correct behaviour of pmax is affected by the existence of proxies

• Letting pmax influence the server’s Max-Age is the current working
consensus

Dynlink Ongoing Discussions (3/3)

• There is a proposal from OMA LwM2M to support 2 new attributes,
epmin and epmax:

The "Minimum Evaluation Period" (epmin) and "Maximum Evaluation Period" (epmax) values can be
used to configure the device to perform reporting evaluations. After the expiry of epmin, the device
MAY immediately perform an evaluation per the "Notification Conditions" above. After the expiry of
epmax, the device MUST perform an evaluation per the "Notification Conditions". If both the epmin
and epmax attributes are defined, the epmin must be less than the epmax.”

• The discussion can be found at https://github.com/core-
wg/dynlink/issues/18
• Comments from the working group?

https://github.com/core-wg/dynlink/issues/18

Dynlink Next Steps

• Draft -12 will reflect editorial changes to reflect state transfers when
conditional observation attributes are used on a resource
• Future drafts will address pmax, epmin and epmax
• A small discussion group will convene after IETF 108 using Jitsi. Please

let authors know if you would like to receive an invitation to join

SenML

SenML Features and Versions
draft-ietf-core-senml-versions-00	

Carsten	Bormann	
IETF	108,	2020-07-28,	in	the	cloud

1

RFC 8428, SenML: Version 10

• RFC	8428	SenML	evolution	path:	allows	for	version	upgrade	
• Default	version:	10	(accounting	for	previous	development	versions)	
• Can	set	higher:		[{“bver":11,	“v”:4711},	…]	
• Semantics	to	be	defined	by	RFC	updating	RFC	8428

2

Objective: extensibility

• Over	time,	new	specifications	will	add	features	to	SenML	
• Version	number	is	a	unitary	declaration:	
implementation	of	certain	features	is	needed	by	the	receiver	to	
process	SenML	pack	

• Version	number	N+1	includes	all	features	of	version	number	N	
(total	order)	
• Except	for	features	that	are	deprecated

3

Version numbers are stupid

• Well,	they	work	well	for	document	revisions	and	software	releases	
• Not	so	great	for	protocols	and	other	interface	specifications	
• Long	discussion	in	T2TRG:	
Version	numbers	force	creating	a	total	order	on	a	set	of	new	features	
• Better:	declare	individual	features	
• Could	do	with	must-understand	fields:	bfeature1_: true
• But	maybe	can	leverage	the	version	number?

4

Proposal: interpret version number as bits

• A	number	can	be	used	as	a	bit	array	
• Version	10	=	10102,	i.e.	features	1	and	3	(21	+	23	=	10)	
• Add	bits	for	additional	features	
• Proposed	feature	4:	use	of	Secondary	Units	(24	=	16)	
Version	number	with	that	additional	feature	would	thus	be	26	
• Feature	code	can	go	up	to	52	(53-bit	integers	in	JSON):	
48	remaining	now	(after	secondary	units)

5

53: wasn’t that an evil number?

• Yes.	
• But	it	could	be	all	we	need:	
• As	the	number	of	features	that	can	be	registered	has	a	hard	limit	
(48	codes	left	at	the	time	of	writing),	the	designated	expert	is	
specifically	instructed	to	maintain	a	frugal	regime	of	code	point	
allocation,	keeping	code	points	available	for	SenML	Features	
that	are	likely	to	be	useful	for	non-trivial	subsets	of	the	SenML	
ecosystem.	
• Quantitatively,	the	expert	could	for	instance	steer	the	allocation	
to	not	allocate	more	than	10	%	of	the	remaining	set	per	year.

6

draft-ietf-core-senml-versions-00

• Defines	the	feature	system:	
New	Registry	under	the	SenML	registry	
Reserving	feature	code	0..3	for	“10	=	10102”	
Specification	required,	frugality	mandate	to	designated	expert	
• Updates	the	RFC	8428	version	number	to	use	that	system	
• Registers	feature	code	4:	Use	of	secondary	units	

• Now	WG	draft,	submitted	2020-05-13	
• Referenced	from	RFC	8798	(senml-more-units)	

• No	technical	changes	from	2020-03-06	draft-bormann-core-senml-versions-01

7

Next steps

• Need	more	reviews!	
This	is	just	about	the	interpretation	for	one	field…	
• Proposal:	Process	these	reviews,	check	if	we	are	done,	WGLC

8

SenML Data Value Content-
Format Indication

draft-ietf-core-senml-data-ct-02	

Carsten	Bormann	

IETF	108

Content-Format indication

• SenML	Records	can	contain	(binary)	"data	values"	in	a	"vd"	field	

• This	draft:	new	Content-Format	indication	("ct")	field	to	indicate	the	

Content-Format	of	the	data	in	the	SenML	Record

[
 {"bn":"urn:dev:ow:10e2073a01080063:", "n":"temp", "v":7.1},
 {"n":"open", "vb":false},
 {"n":"nfc-reader", "vd":"aGkgCg"}
]

2

Example SenML Record with data value and
Content-Format indication

{"n":"nfc-reader", "vd":"gmNmb28YKg", "ct":60}

82 # array(2)
 63 # text(3)
 666F6F # "foo"
 18 2A # unsigned(42)

base64()

CBOR	CoAP	

Content	Format

3

Updates for draft-ietf-senml-data-ct-02

• must-understand-ct-field	(“ct_”)	proved	inscrutable	

• Interaction	with	normal	field	(“ct”)	in	resolution	process	is	

unmanageable	

• So	we	got	rid	of	it	again	(thanks	for	the	suggestion,	Klaus)	
• Would	have	been	nice	to	have,	but	don’t	know	how	to	do	it	

• Authors	believe	this	is	now	ready	for	WGLC

4

Blockwise for DOTS

New CoAP Block-Wise Transfer
Options For Faster Transmission

draft-bosh-core-new-block-04

IETF CoRE Meeting, 28th July 2020

Mohamed Boucadair
Jon Shallow

1

https://tools.ietf.org/html/draft-bosh-core-new-block-04

Agenda

• Handling blocks in lossy environments:
The DOTS Case

• The Solution
–Block3 Option
–Block4 Option

• Next Steps

2

Sample Target Deployment

Internet

Local
DOTS Client

Upstream
 DOTS Server

+
Mitigation

Pipe Overload
Inbound

Firewall /
Smart Router

DOTS
Protocol

• DDoS Open Threat Signalling (DOTS)
• DOTS: App – CBOR – CoAP – DTLS – IP
• Client requests mitigation (NON)
• Server updates with simple DOTS

mitigation status (NON)
• Inbound Pipe Overload

– Clients can still request mitigations
– Mitigation should be able to control pipe

overload

• See RFC8782 for more details

3

https://www.rfc-editor.org/rfc/rfc8782.html

DOTS-inferred CoAP Requirements

• Need to transfer body with multiple payloads
• Handle packet loss

– Need recovery mechanism
• Cannot rely on getting responses (Pipe overload)

– Request/Response model lock-step fails
• Fast transfer for large bodies

– Lock-step model slows things down (RTT)
– Packet interchange reduction

• Utilize other CoAP options where possible
• Maintain existing CoAP ethos/methodology

4

Solution

• BLOCK3 with BLOCK1 characteristics
• BLOCK4 with BLOCK2 characteristics

• OSCORE Class E and Class U

5

+--------+---+---+---+---+-----------+--------+--------+---------+

| Number | C | U | N | R | Name | Format | Length | Default |

+========+===+===+===+===+===========+========+========+=========+

| TBA1 | x | | | | Block3 | uint | 0-3 | (none) |

| TBA2 | x | | | x | Block4 | uint | 0-3 | (none) |

+--------+---+---+---+---+-----------+--------+--------+---------+

BLOCK3
• BLOCK3 has BLOCK1 characteristics
• Individual payload 2.xx response not required

– 2.31 (Continue) not used
• Use of NON (recommended) or increase of NSTART
• Requires CoAP Option Request-Tag unique per body
• Each request payload has unique Token
• New TBA3 4.xx (Missing Payloads) to indicate missing

payloads
• Every MAX_PAYLOAD (default 10) pause/check guard

(ACK_TIMEOUT or CON)
• Body subject to PROBING_RATE

6

Co
ng

es
tio

n
Co

nt
ro

l

Response TBA3 4.xx (Missing Payloads)

• CBOR encoded diagnostic response
• Content-Format

“application/missing-blocks+cbor-seq”
• CDDL

7

TBA3-payload = (request-tag, missing-block-list)

; A copy of the opaque Request-Tag value

request-tag = bstr

missing-block-list = [1 * missing-block-number]

; A unique block number not received

missing-block-number = uint

BLOCK3 Example

CoAP CoAP

Client Server

| Success |

+--------->| NON PUT /path M:0x01 T:0xf0 RTag=10 B3:0/1/1024

+--------->| NON PUT /path M:0x02 T:0xf1 RTag=10 B3:1/1/1024

+--------->| NON PUT /path M:0x03 T:0xf2 RTag=10 B3:2/1/1024

+--------->| NON PUT /path M:0x04 T:0xf3 RTag=10 B3:3/0/1024

|<---------+ NON 2.04 M:0xf1 T:0xf3

| Failure |

+--------->| NON PUT /path M:0x05 T:0xe0 RTag=11 B3:0/1/1024

+--->X | NON PUT /path M:0x06 T:0xe1 RTag=11 B3:1/1/1024

+--->X | NON PUT /path M:0x07 T:0xe2 RTag=11 B3:2/1/1024

+--------->| NON PUT /path M:0x08 T:0xe3 RTag=11 B3:3/0/1024

| Retry |

|<---------+ NON TBA3 M:0xf2 T:0xe3 [Missing 1,2 for RTag=11]

+--------->| NON PUT /path M:0x09 T:0xe4 RTag=11 B3:1/1/1024

+--->X | NON PUT /path M:0x0a T:0xe5 RTag=11 B3:2/1/1024

| Retry |

|<---------+ NON TBA3 M:0xf3 T:0xe4 [Missing 2 for RTag=11]

+--------->| NON PUT /path M:0x0b T:0xe6 RTag=11 B3:2/1/1024

|<---------+ NON 2.04 M:0xf4 T:0xe6

8

Block3Request-
Tag

More

Num

SZX
MID Token

BLOCK4

• BLOCK4 has BLOCK2 characteristics
• GET with BLOCK4 triggers BLOCK4 response

instead of BLOCK2 if needed
– Missing blocks indicated by GET with multiple BLOCK4

• Use of NON (recommended) or increase of
NSTART

• Requires CoAP Option ETag unique per body
• Every MAX_PAYLOAD (default 10) pause/check

guard (ACK_TIMEOUT or CON)
• Body subject to PROBING_RATE

9

Co
ng

es
tio

n
Co

nt
ro

l

BLOCK4 with Observe

• Same Observe value returned in all of the
pseudo responses for the same body
– Block Number 0 could get dropped

• Same Token is used in the set of pseudo
responses

• New Token used for requesting missing blocks
– Set of retry pseudo responses use new Token

• Next Observe pseudo response uses original
Observe setup Token

10

BLOCK4 Example 1

CoAP CoAP

Client Server

| |

+--------->| NON GET /path M:0x01 T:0xf0 O:0 B4:0/0/1024

|<---------+ NON 2.05 M:0xf1 T:0xf0 O:1234 ETag=21 B4:0/1/1024

|<---------+ NON 2.05 M:0xf2 T:0xf0 O:1234 ETag=21 B4:1/1/1024

|<---------+ NON 2.05 M:0xf3 T:0xf0 O:1234 ETag=21 B4:2/1/1024

|<---------+ NON 2.05 M:0xf4 T:0xf0 O:1234 ETag=21 B4:3/0/1024

...

[[Observe triggered]]

|<---------+ NON 2.05 M:0xf5 T:0xf0 O:1235 ETag=22 B4:0/1/1024

|<---------+ NON 2.05 M:0xf6 T:0xf0 O:1235 ETag=22 B4:1/1/1024

|<---------+ NON 2.05 M:0xf7 T:0xf0 O:1235 ETag=22 B4:2/1/1024

|<---------+ NON 2.05 M:0xf8 T:0xf0 O:1235 ETag=22 B4:3/0/1024

...

11

Block4

More

Num

SZX
MID

Token

Observe

BLOCK4 Example 2
CoAP CoAP

Client Server

| |

...

[[Observe triggered]]

|<---------+ NON 2.05 M:0xf9 T:0xf0 O:1236 ETag=23 B4:0/1/1024

| X<---+ NON 2.05 M:0xfa T:0xf0 O:1236 ETag=23 B4:1/1/1024

| X<---+ NON 2.05 M:0xfb T:0xf0 O:1236 ETag=23 B4:2/1/1024

|<---------+ NON 2.05 M:0xfc T:0xf0 O:1236 ETag=23 B4:3/0/1024

| |

[[Client realizes blocks are missing and asks for the missing ones in one go]]

+--------->| NON GET /path M:0x02 T:0xf1 B4:1/0/1024 B4:2/0/1024

| X<---+ NON 2.05 M:0xfd T:0xf1 ETag=23 B4:1/1/1024

|<---------+ NON 2.05 M:0xfe T:0xf1 ETag=23 B4:2/1/1024

| |

[[Get the final missing block]]

+--------->| NON GET /path M:0x03 T:0xf2 B4:1/0/1024

|<---------+ NON 2.05 M:0xff T:0xf2 ETag=23 B4:1/1/1024

...

12

Block4

More

Num

SZX
MID Token

Observe

Status & Next Steps

• The draft was discussed in two dedicated
interim meetings
– All comments raised in these interims and also in the

mailing list are addressed
– Simplified design with reuse of existing CoAP options

• Request adoption as a WG Document

Thank You
13

AIF

Authorization Information
Format (AIF)
draft-bormann-core-ace-aif-09	

Carsten	Bormann	

IETF	108

Problem: Convey authorization information

• Authorization	(“Access	Control”)	is	usually	modeled	by	the	Access	
Control	Matrix	(Lampson	1971),	a	function	mapping	a	Subject	and	an	
Object	to	a	set	of	Permissions	(Rights):	M:	S	x	O	→	2R	

• This	is	often	sliced	by	object	into	an	ACL	(Access	Control	List)	
• To	know	about	the	authorizations	of	a	client,	we	slice	by	subject:	
“Capability	list”	or	“C-list”,		C:	O	→	2R	

• Binding	to	subject	done	outside,	e.g.	in	access	grant	(in	certain	kinds	
of	secure	channel,	or	providing	some	subject	authentication	verifier,	
e.g.,	a	Proof	of	Possession	token)

2

draft-bormann-core-ace-aif

• Represent	C-list	as	an	array	of	pairs:	
						AIF-Generic<Toid,	Tperm>	=	[*	[Toid,	Tperm]]	

• For	the	RESTful	case,	specialize	to:	
						AIF-REST	=	AIF-Generic<path,	permissions>	

						path	=	tstr			;	URI	relative	to	enforcement	point	—	O	
						permissions	=	uint	.bits	methods		;	what	methods	are	allowed	—	2R	
						methods	=	&(GET:	0	POST:	1	PUT:	2	DELETE:	3	FETCH:	4	PATCH:	5	iPATCH:	6)	

• Could	define	other	cases,	e.g.,	for	MQTT	(outside	scope	of	this	spec)

3

Dynamic permissions in
draft-bormann-core-ace-aif-09
• AIF	is	designed	for	static	resources	of	IoT	devices	
• Actions	often	lead	to	dynamic	“action	resources”		
(pointed	to	by	Location-*	response	options)	

• Idea:	Derive	permissions	from	base	resource	

• 			methods	/=	&(Dynamic-GET:	32	Dynamic-POST:	33	Dynamic-PUT:	34					
																Dynamic-DELETE:	35		
																Dynamic-FETCH:	36	Dynamic-PATCH:	37	Dynamic-iPATCH:	38)	

• These	permissions	say	what	can	be	done	to	resources	created	from	
the	resource	to	which	they	apply	(a	bit	like	NFSv4	inheritance)

4

Status for draft-bormann-core-ace-aif-09

• AIF	has	been	around	since	2014	(part	of	DCAF	work);		
was	listed	as	contribution	on	ACE	BOF	at	IETF	89	

• ACE	has	recently	noticed	a	need	to	go	ahead	with	standardizing	this;		
WG	adoption	call	ends	today	(you	can	still	put	in	your	opinion!)	
• Ben	Kaduk:		
What	else	exists	like	this?		How	could	AIF	be	used	outside	ACE?	

• On	agenda	of	ACE	meeting	tomorrow

5

CoRECONF

CORECONF - CORE - 31.08.2020 - M. Veillette, A. Bierman, P. van der Stok, A. Pelov, I. Petrov

CORECONF
Andy Bierman
Michel Veillette

Peter van der Stok
Alexander Pelov

Ivaylo Petrov

1

CORECONF - CORE - 31.08.2020 - M. Veillette, A. Bierman, P. van der Stok, A. Pelov, I. Petrov

● Clarified and fixed some examples
● Cleared confusion between YANG template and yang-data extensions
● Made 'bits' encoding more efficient in case of big position values
● Added application/yang-data+cbor media-type and

application/yang-data+cbor; id=name content-type definition
● Fixed inconsistency between text and CBOR tag registration table

Status yang-cbor -12 -> -13

2

CORECONF - CORE - 31.08.2020 - M. Veillette, A. Bierman, P. van der Stok, A. Pelov, I. Petrov

● Renamed SID to YANG SID
● Clarified early allocation
● Added content type registration of application/yang-data+cbor; id=sid
● Clarified that new SIDs are required for change in semantics of nodes
● Do not depend on JSON encoding for definitions
● Made explicit the use of YANG 1.1 for ietf-sid-file
● Added missing YANG module related namespace registration
● Removed the default SID range sizes

Status SID -12 -> -14

3

CORECONF - CORE - 31.08.2020 - M. Veillette, A. Bierman, P. van der Stok, A. Pelov, I. Petrov

● Only use the name CORECONF as CoMI does not seem to need it's proper
name

● Updated Media-type and Content-type registrations
● Extended the security considerations section
● Updated and clarified some examples

Status comi -09 -> 10

4

CORECONF - CORE - 31.08.2020 - M. Veillette, A. Bierman, P. van der Stok, A. Pelov, I. Petrov

● Added missing YANG module related namespace registration
● Extended the security considerations section

Status yang-library -01 -> -02

5

CORECONF - CORE - 31.08.2020 - M. Veillette, A. Bierman, P. van der Stok, A. Pelov, I. Petrov

● Result from the WGLC and next steps

Steps forward

6

Group Communication

Group Communication for the
Constrained Application Protocol (CoAP)

draft-ietf-core-groupcomm-bis-01

Esko Dijk, IoTconsultancy.nl
Chonggang Wang, InterDigital

Marco Tiloca, RISE

IETF 108 - CoRE WG, July 31st, 2020

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 2

› Intended normative successor of experimental RFC 7390 (if approved)
– As a Standards Track document
– Obsoletes RFC 7390; Updates RFC 7252 and RFC 7641

› Be standard reference for implementations that are now based on RFC 7390, e.g.:
– “Eclipse Californium 2.0.x” (Eclipse Foundation)
– “Implementation of CoAP Server & Client in Go” (OCF)

› What’s in scope?
– CoAP group communication over UDP/IP, including latest developments

(Observe/Blockwise/Security …)
– Unsecured CoAP or group-OSCORE-secured communication
– Principles for secure group configuration
– Use cases (appendix)

Goal

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 3

› Mostly addressed Jim’s review at [1] – Thanks!

› Clarifications on group membership for client-only nodes
– Don’t have to be in an application group or CoAP group
– Have to be in the used security group

› Response suppression
– No need to talk of “legitimate” requests (was issue #4)
– Suppress if nothing to say, unless the application requires to respond anyway

› Token reuse
– Clearer indications and differences compared to the unicast case

[1] https://mailarchive.ietf.org/arch/msg/core/CkoNseJhJgALEs3iOLMqUZhEarI/

Overview of -01 updates

https://mailarchive.ietf.org/arch/msg/core/CkoNseJhJgALEs3iOLMqUZhEarI/

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 4

› When proxies are used
– Clarifications on stop accepting responses to group requests
– The client has more (app-)context information to judge when stopping

› Multicast scope to use
– Configure in advance, i.e. not up to the client to decide

› Clarification on cancelling group observations

› Usage of Group OSCORE
– Mentioned both the group mode and the pairwise mode (was issue #5)
– Creation/management of OSCORE groups addressed in other documents
– Updated security considerations; reference to COSE-bis documents

Overview of -01 updates

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 5

› The UDP port may change (issue #1)
– Multicast request Æ Src: 59101 Dst: 9999
– Unicast response Æ Src: 5683 Dst: 59101

› The outcome of the thread at [2] seems to converge to:
– Both source address and source port number of the response are irrelevant to

the successful processing at the client

› Planned update
– The source port number of the response can differ from the destination port

number of the request. A client MUST be able to handle this.
– Issues with that?

[2] https://mailarchive.ietf.org/arch/msg/core/d2CJN0g-ksq9uf0hDqBCRqcHz5g/

Open Github issues

https://mailarchive.ietf.org/arch/msg/core/d2CJN0g-ksq9uf0hDqBCRqcHz5g/
https://mailarchive.ietf.org/arch/msg/core/d2CJN0g-ksq9uf0hDqBCRqcHz5g/
https://mailarchive.ietf.org/arch/msg/core/d2CJN0g-ksq9uf0hDqBCRqcHz5g/

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 6

› Requirements for response suppression (issue #2)
– Operate on Response Code Class, instead of Response Code
– Planned to switch to Response Code Class, as NoResponse does
– Issues with that?

› Use URI-Host for naming application groups (issue #3)
– “If encoded in the CoAP group URI, the information typically gets removed in

the CoAP request sent over the wire. Then the receiving server cannot use it.”
– ”It can be added to an outgoing CoAP request (with the group URI already

resolved to IP address). Then it influences the choice of application group,
because each virtual server will have a different set of resources hosted.”

– Should the draft explicitly admit it?

Open Github issues

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 7

› Client support for admin-local scope
– It’s not in RFC 7252, but it’s in RFC 7390 for discovery use cases.
– Keep it?

› Mapping of application groups and security groups, see [3]
– Many app groups using one sec group is fine.
– One app group using many sec groups is “delicate”.
– Case A: the sec groups use different algorithms/parameters Æ A server joins all of them;

a client joins any that it supports. This looks ok.
– Case B: the sec groups express different access control properties Æ This is problematic

and a trouble for applications; better rely on resource properties.
– Proposal: include Case A as relevant example; not recommend Case B

[3] https://mailarchive.ietf.org/arch/msg/core/4JtUVaB-XG_g0i_8v8CEMGyNdO8/

More open points

https://mailarchive.ietf.org/arch/msg/core/4JtUVaB-XG_g0i_8v8CEMGyNdO8/
https://mailarchive.ietf.org/arch/msg/core/4JtUVaB-XG_g0i_8v8CEMGyNdO8/
https://mailarchive.ietf.org/arch/msg/core/4JtUVaB-XG_g0i_8v8CEMGyNdO8/

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 8

› Work on open Github issues

› Address open points
– Two left from Jim’s review of -00
– Others also raised today

› Interop of selected functions in CoAP implementations
– “Observe + multicast” – Locally tested, w/ and w/o Group OSCORE
– Limited usage of Blockwise (first multicast request with Block2)

Next steps

Thank you!

Comments/questions?

draft-ietf-core-groupcomm-bis | IETF 108 | CoRE WG | July 31st, 2020 Page 10

› RFC 7390 was published in 2014
– CoAP functionalities available by then were covered
– No group security solution was available to indicate
– It is an Experimental document (started as Informational)

› What has changed?
– More CoAP functionalities have been developed (Block-Wise, Observe)
– RESTful interface for membership configuration is not really used
– Group OSCORE provides group end-to-end security for CoAP

› Practical considerations
– Group OSCORE clearly builds on RFC 7390 normatively
– However, it can refer RFC 7390 only informationally

Motivation (backup slide)

Group OSCORE - Secure Group
Communication for CoAP
draft-ietf-core-oscore-groupcomm-09

Marco Tiloca, RISE
Göran Selander, Ericsson

Francesca Palombini, Ericsson
Jiye Park, Universität Duisburg-Essen

IETF 108, CoRE WG, July 31st, 2020

IETF 108 | CoRE WG | 2020-07-31 | Page 2

› Version -09 submitted in June
– Addressed open points raised in April
– Addressed remaining points from Jim‟s and Christian‟s reviews

› WGLC on -09, ended the 20th of July
– Comments from Jim [1] and Peter [2] – Thanks!

› 2nd interop during this Hackathon

› New discussion item on separate pairwise space for PIVs

[1] https://mailarchive.ietf.org/arch/msg/core/VMhrAPEt4TE8jahatVd1EoDzdMI/
[2] https://mailarchive.ietf.org/arch/msg/core/tOHaMpTrWJ2CfsX2E5IGS8qpt-U/

Update since the April meeting

https://mailarchive.ietf.org/arch/msg/core/VMhrAPEt4TE8jahatVd1EoDzdMI/
https://mailarchive.ietf.org/arch/msg/core/tOHaMpTrWJ2CfsX2E5IGS8qpt-U/
https://mailarchive.ietf.org/arch/msg/core/tOHaMpTrWJ2CfsX2E5IGS8qpt-U/
https://mailarchive.ietf.org/arch/msg/core/tOHaMpTrWJ2CfsX2E5IGS8qpt-U/

IETF 108 | CoRE WG | 2020-07-31 | Page 3

› Two different operating modes
– Group mode – Main and usual mode

› MUST be supported
› Encryption with group keying material; signature included

– Pairwise mode
› MAY be supported – If so, use for unicast requests (e.g., Block-wise, Echo, …)
› Encryption with derived pairwise keying material; no signature

› New Group Flag bit in the OSCORE option
– Set to 1 if the message is protected in group mode
– Set to 0 if the message is protected in pairwise mode (aligned with OSCORE)

Main updates in -09

IETF 108 | CoRE WG | 2020-07-31 | Page 4

› Pairwise key derivation
– Same construction from 3.2.1 of RFC 8613
– Pairwise key = HKDF(Sender/Recipient Key, DH Shared Secret, info, L)

› Sender Key of the sender node, i.e. Recipient Key of the recipient side
› Static-static DH shared secret, from one‟s private key and the other‟s public key

– Compatible with ECDSA and EdDSA (after coordinate remapping)

› Major editorial revision of Section 2 “Security Context”
– Improved presentation of Common/Sender/Recipient context
– Derivation of keys for the pairwise mode explained here
– Update and loss of the Security Context (e.g., in case of rekeying and reboot)

› Usage of update registries and COSE capabilities from COSE-bis

Main updates in -09

IETF 108 | CoRE WG | 2020-07-31 | Page 5

› Tests with RISE and August Cellars implementations

› Successful interop tests
– Communication in group mode
– Derivation of pairwise keys

› Successful local tests
– Communication in pairwise mode

Report from IETF 108 Hackathon

IETF 108 | CoRE WG | 2020-07-31 | Page 6

› Information is now replicated in the Security Context
– Sufficient to keep „Counter Signature Parameters‟
– Delete „Counter Signature Key Parameters‟ as redundant.
– Issues with that?

› Curve remapping in the pairwise mode, for DH secret derivation
– Current text Ed25519 (MTI) Æ Montgomery for X25519 (MTI if supporting pairwise mode)
– Jim: consider remapping to the short-Weierstrass curve instead
– Mention just as possible alternative? Or have Wei25519 and ECDH25519 as MTI?

› Wrap-around of Sender Sequence Number (SSN)
– Jim: is the wrap-around of the SSN or of the PIV?
– It should really be the SSN, which is used as PIV. Anything missing to clarify?

Main points from WGLC

IETF 108 | CoRE WG | 2020-07-31 | Page 7

› Support for Observe, across group rekeying
– Now the client and server store the „kid‟ of the original Observe request
– That value is the „request_kid‟ in the external_aad of notifications, also after rekeying
– Jim: should we store also the kid context?
– No need to, it‟s not part of the „external_aad‟. Keep as is?

› New Context established Æ Reset the Sender Sequence Number to 0 ?
– Now it‟s not reset, unless the application decides differently
– Jim: having it reset simplifies the detection of group rekeying
– Reset also Replay Windows and Observe Numbers of ongoing observations
– Change to reset by default? Can the application do differently?

Main points from WGLC

IETF 108 | CoRE WG | 2020-07-31 | Page 8

› Right now: every node has a single SSN space
– Used for PIVs both in group mode and pairwise mode

› New proposal from Jim: two separate SSN spaces
– One SSN for the group mode
– For each associated recipient

› One pairwise SSN – NEW
– For each associated client

› One group Replay Window
› One pairwise Replay Window – NEW

Separate SSN spaces

IETF 108 | CoRE WG | 2020-07-31 | Page 9

› Pros
– Less frequent exhaustion of SSN values
– Reuse of OSCORE code for the pairwise mode

› Cons
– Higher storage (extra SSNs and Replay Windows)
– Might result in greater communication overhead (fresh PIV in some responses)

› Issues
1. The server might have to use its fresh PIV (no reusage of request PIV)

› E.g., when request and response are protected in different modes
2. Separate synchronization of the two spaces for servers

› The synch method using Echo needs some adaptation (see Appendix E.3)

Separate SSN spaces

IETF 108 | CoRE WG | 2020-07-31 | Page 10

1. C Æ S : Request in Group Mode
– kid: SIDC ; piv: gPIVC

– Nonce built from { SIDC , gPIVC } ; Key: gKC

2. S Æ C : Response in Pairwise Mode
– kid: SIDS ; piv: NONE
– Nonce built from { SIDS , gPIVC } ; Key: pKSC

3. C Æ S : Request in Pairwise Mode
– kid: SIDC ; piv: pPIVCS

– Nonce built from { SIDC , pPIVCS } ; Key: pKCS

4. S Æ C : Response in Pairwise Mode
– kid: SIDS ; piv: NONE
– Nonce built from { SIDS , pPIVCS } ; Key: pKSC

Separate SSN spaces - Issue #1
Request and response are

protected in different modes

AND
The server reuses the request PIV

(PIV reflection)

If gPIVC == pPIVCS , in (1) and (3)

Nonce reusage with pKSC , in (2) and (4)

{ SIDS , gPIVC } == { SIDS , pPIVCS }

IETF 108 | CoRE WG | 2020-07-31 | Page 11

1. C Æ S : Request in group mode
– With client‟s group PIV

2. S Æ C : Response in pairwise mode
– With server‟s pairwise PIV and Echo option
– S stores <kid, gid, piv> from the request at (1)

3. C Æ S : Request in pairwise mode
– With client‟s pairwise PIV and Echo option
– Should also include the client‟s group PIV

› Need more discussion, especially with implementers
– Weigh pros/cons and performance tradeoffs

› Opinions about separate SSN spaces?

Separate SSN spaces - Issue #2
a)In a new CoAP option

b)In the payload, next to the ciphertext
• Length signaled in the OSCORE option

• Need to integrity protect?

• How for (b)? Use the external_aad ?
• It deviates from OSCORE format
• Not ideal for code reuse

Where?

IETF 108 | CoRE WG | 2020-07-31 | Page 12

› Addressing WGLC comments in version -10
– Jim
– Peter

› More discussion on separate PIVs for the pairwise mode

› More interop tests in pairwise mode

Next steps

Thank you!

Comments/questions?

https://github.com/core-wg/oscore-groupcomm

https://github.com/core-wg/oscore-groupcomm
https://github.com/core-wg/oscore-groupcomm
https://github.com/core-wg/oscore-groupcomm
https://github.com/core-wg/oscore-groupcomm
https://github.com/core-wg/oscore-groupcomm
https://github.com/core-wg/oscore-groupcomm

Discovery of OSCORE Groups
with the CoRE Resource Directory

draft-tiloca-core-oscore-discovery-06

Marco Tiloca, RISE
Chris�an Amsüss
Peter van der Stok

IETF 108, CoRE WG, July 31st, 2020

IETF 108 | CoRE WG | 2020-07-31 | Page 2

› A newly deployed device:

– May not know the OSCORE groups and their Group Manager (GM)

– May have to wait GMs to be deployed or OSCORE groups to be created

› Use web links for discovery – typically through the Resource Directory (RD)

– Discover an OSCORE group and retrieve information to join it

– Practically, discover the links to join the OSCORE group at its GM

– CoAP Observe supports early discovery and changes in group information

› Use resource lookup, to retrieve:

– The name of the OSCORE group

– A link to the resource at the GM for joining the group

Recap

IETF 108 | CoRE WG | 2020-07-31 | Page 3

› Addressed review of -05 from Jim – Thanks!

– https://mailarchive.ietf.org/arch/msg/core/h62d2c2mYmG43ykz52KvbbEpgDc/

– Some new open points (later slides)

› Revised terminology about groups

– Now better aligned with draft-ietf-core-groupcomm-bis

› Clarified limitation of Link-Format as non typed

– We can’t signal an algorithm that has string value “-10” in the COSE registry

– No such problem if we use CoRAL

Updates overview

https://mailarchive.ietf.org/arch/msg/core/h62d2c2mYmG43ykz52KvbbEpgDc/

IETF 108 | CoRE WG | 2020-07-31 | Page 4

› Fairhair/BACnet example

– Removed the double registration

– Removed registration of membership to application groups

› Feature not defined in the RD document; we don’t want to introduce it here

› Common practice in some deployments; it can be in a separate document

– Clarified that it’s just an example, with no prescriptive intentions

› Added some text on one application group using many security groups

– As of now, general reference to application policies

– To be refined, based on the outcome of [1] related to draft-ietf-core-groupcomm-bis

– Further discussion required: Which security groups must a participant join?

[1] https://mailarchive.ietf.org/arch/msg/core/4JtUVaB-XG_g0i_8v8CEMGyNdO8/

Updates overview

https://mailarchive.ietf.org/arch/msg/core/4JtUVaB-XG_g0i_8v8CEMGyNdO8/

IETF 108 | CoRE WG | 2020-07-31 | Page 5

› Examples in CoRAL

– Now moved to the document body

– Next to the Link-Format examples

› Registration

› Update with re-registration

› Lookup #1, Lookup #2

› New Appendix A

– Full Fairhair/BACnet example in CoRAL

› This version -06 has now full support

for both Link-Format and CoRAL RD

Updates overview

IETF 108 | CoRE WG | 2020-07-31 | Page 6

› When registering an OSCORE

group to the RD

– Possible to register related link to

an Authorization Server (AS)

– The AS is associated to the GM

of the OSCORE group

Open points

› Jim: not sure it should be the GM to register the “rel” link to the AS

› Who else can that be? It’s about accessing resources at the GM.

› The GM also knows about that AS already when the group is created

IETF 108 | CoRE WG | 2020-07-31 | Page 7

› When registering an OSCORE

group to the RD

– The GM indicates the names of

the application groups using the

OSCORE group

– Now we don’t say how the GM

knows the application groups

Open points

› Suggestion from Jim in the “CoRAL and forms” discussion [2].

› Related to the GM admin interface in draft-tiloca-ace-oscore-gm-admin

› When creating the OSCORE group at the GM, indicate also the application groups

[2] https://mailarchive.ietf.org/arch/msg/core/BoYGYmEpJMUS8bk4PNHOEaFFcdU/

https://mailarchive.ietf.org/arch/msg/core/BoYGYmEpJMUS8bk4PNHOEaFFcdU/

IETF 108 | CoRE WG | 2020-07-31 | Page 8

› We now use a resource type

– rt = “core.osc.mbr”

– Group-membership resource of

an OSCORE Group Manager

› Should we have also an if= ?

Open points

› Probably it does not matter that much, but …

› Compare draft-ietf-ace-key-groupcomm:

› The group’s parent uses if=ace.group

IETF 108 | CoRE WG | 2020-07-31 | Page 9

› Addressed Jim’s review

› Revised CoRAL examples in the document body

› Next steps

– Close open points from Jim’s review

– Bridge with ace-oscore-gm-admin - The GM knows the names of application groups

› Need for reviews

Summary and next steps

Thank you!

Comments/ques/ons?

https://gitlab.com/crimson84/draft-tiloca-core-oscore-discovery

https://gitlab.com/crimson84/draft-tiloca-core-oscore-discovery
https://gitlab.com/crimson84/draft-tiloca-core-oscore-discovery

Backup

IETF 108 | CoRE WG | 2020-07-31 | Page 12

› Application group

– Defined in {RD} and reused as is

– Set of CoAP endpoints sharing a pool of resources

– Registered and looked up just as per Appendix A of {RD}

› CoAP Group

– Defined in draft-ietf-core-groupcomm-bis

– Set of CoAP endpoints listening to the same IP multicast address

– The IP multicast address is the ‘base’ address of the link to the application group

› (OSCORE) Security Group

– Set of CoAP endpoints sharing a common security material (e.g. OSCORE Ctx)

– A GM registers the group-membership resources for accessing its groups

Applica/on/CoAP/Security Groups

IETF 108 | CoRE WG | 2020-07-31 | Page 13

Applica/on vs. Security Groups

Security Group 1

Application Group 1

 Application Group 2

Security Group 2

Application Group 3

Resources for given functionDifferent key sets

CoAP group with

one multicast address

Client of application group

IETF 108 | CoRE WG | 2020-07-31 | Page 14

› New optional parameters for a registered group-membership resource

– (*)(**) cs_alg : countersignature algorithm, e.g. “EdDSA”

– (*) cs_alg_crv : countersignature curve (if applicable), e.g. “Ed25519”

– (*) cs_key_kty : countersignature key type, e.g. “OKP”

– (*) cs_key_crv : countersignature curve (if applicable), e.g. “Ed25519”

– (*) cs_kenc : encoding of public keys, e.g. “COSE_Key”

– (**) alg : AEAD algorithm

– (**) hkdf : HKDF algorithm

› Benefits for a joining node, when discovering the OSCORE group

– (*) No need to ask the GM or to have a trial-and-error when joining the group

– (**) Decide whether to join the group or not, based on supported the algorithms

Alg/key related parameters

IETF 108 | CoRE WG | 2020-07-31 | Page 15

› The GM registers itself with the RD
– MUST include all its join resources, with their link attributes

– New ‘rt’ value “core.osc.mbr”

Registra/on

IETF 108 | CoRE WG | 2020-07-31 | Page 16

› The device performs a resource lookup at the RD
– Known information: name of the Application Group, i.e. “group1”

– Need to know: OSCORE Group Identifier; Join resource @ GM; Multicast IP address

– ‘app-gp’  Name of the Application Group, acting as tie parameter in the RD

Discovery (1/2)

IETF 108 | CoRE WG | 2020-07-31 | Page 17

› The device performs an endpoint lookup at the RD
– Still need to know the Multicast IP address

– ‘ep’ // Name of the Application Group, value from ‘app-gp’

– ‘base’ // Multicast IP address used in the Application Group

Discovery (2/2)

Observe No
�ca
ons as
CoAP Mul
cast Responses

draft-tiloca-core-observe-multicast-notifications-03

Marco Tiloca, RISE
Rikard Höglund, RISE

 Chris�an Amsüss
Francesca Palombini, Ericsson

IETF 108, CoRE WG, July 31st, 2020

IETF 108 | CoRE WG | 2020-07-31 | Page 2

Recap
› Observe notifications as multicast responses

– Many clients observe the same resource on a server S

– Improved performance due to multicast delivery

– Multicast responses are not defined yet. Token binding? Security?

› Example use case

– Pub-Sub scenario

– Many clients subscribe to

 a same topic on the Broker

– Better performance

– Subscribers are clients only

From the Hallway Discussion @ IETF 104

IETF 108 | CoRE WG | 2020-07-31 | Page 3

› Define Observe notifications as multicast responses

› Token space from a group to a particular server

– The Token space belongs to the group (clients)

– The group entrusts the management to the server

– All clients in a group observation use the same Token value

› Group OSCORE to protect multicast notifications

– The server aligns all clients of an observation on a same external_aad

– All notifications for a resource are protected with that external_aad

Proposed approach

IETF 108 | CoRE WG | 2020-07-31 | Page 4

› The server can start a group observation for a resource, e.g. :

1. With no observers yet, a traditional registration request comes from a first client

2. With many traditional observations, all clients are shifted to a group observation

› Consensus on token / external_aad by creating a Phantom observation request
– Generated inside the server, it does not hit the wire

– Like if sent by the group, from the multicast IP address of the group

– Multicast notifications are responses to this phantom request

› To the unicast request, the server sends a 5.03 error response with:
– Serialization of the phantom request

– IP multicast address where notifications are sent to

– Serialization of the latest multicast notification (i.e. current resource status)

Phantom request and error response

IETF 108 | CoRE WG | 2020-07-31 | Page 5

› Revised encoding of the error response

› Parameter meaning

– ph_req : serialization of the phantom request

– last_notif : serialization of the latest sent multicast notification

– cl_addr , cl_port: source address/port of the phantom request

→ Destination address/port of the multicast notifications

– srv_addr , srv_port: destination address/port of the phantom request

› ‘last_notif’ gives clients:

– The current representation of the target resource

– A baseline for the Observe number of following multicast notifications

– May become optional – opinions?

› When creating the observation, the server creates and stores a first ‘last_notif’

Updates overview
Informative error response

IETF 108 | CoRE WG | 2020-07-31 | Page 6

› Improved rough counting of active clients

– Poll for interest, using a new CoAP option in successful multicast notifications

› Server current rough estimate: N

– Expected confirmations M < N

– Option value: Q = ceil (N / M)

– Each client picks a random I : [0, Q)

– If I == 0, the client sends a re-registration request

› Non Confirmable; w/ No-Response; w/ the new Option having empty value

› Given explicit indications to prevent Smurf attacks

– The server receives R of such requests; X new clients have registered in the meanwhile

› Added a server timeout, building on RFC 7252 and core-groupcomm-bis parameters

– Then N := (R * Q) + X

› The new Appendix A describes the algorithm in pseudo-code

Updates overview

IETF 108 | CoRE WG | 2020-07-31 | Page 7

› Alternative ways to retrieve a phantom request

– Revised examples in Appendix B

– Pub-Sub (phantom request as part of topic metadata)

– Sender introspection of intercepted notifications

› Congestion control

– Added text about broadcast storm

› Clarifications on Group OSCORE

– The group mode is the one to use

Updates overview

IETF 108 | CoRE WG | 2020-07-31 | Page 8

› Multicast notifications to all clients observing a resource

› Latest additions

– Improved encoding of error response

– Improved rough counting of clients

– Clarifications and editorial revision

› Next steps

– Cover a scenario where a Proxy is used

– Align concepts with draft-amsuess-core-cachable-oscore

› Need for document reviews

Summary

Thank you!

Comments/ques
ons?

 https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast

https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast

Backup

IETF 108 | CoRE WG | 2020-07-31 | Page 11

1. Build a GET phantom request; Observe option set to 0

2. Choose a value T, from the Token space for messages …
– … coming from the multicast IP address and addressed to target resource

3. Process the phantom request
– As coming from the group and its IP multicast address

– As addressed to the target resource

4. Hereafter, use T as token value for the group observation

5. Store the phantom request, with no reply right away

Server side

IETF 108 | CoRE WG | 2020-07-31 | Page 12

› The server sends to new/shifted clients an error response with
– ‘ph_req’: serialization of the phantom request

– ‘last_notif’: serialization of the latest sent notification for the target resource

– ‘cli_addr’ and ‘cli_port’: source address/port of the phantom request

– ‘srv_addr’ and ‘srv_port’: destination address/port of the phantom request

› When the value of the target resource changes:
– The server sends an Observe notification to the IP multicast address ‘cli_addr’

– The notification has the Token value T of the phantom request

› When getting the error response, a client:
– Configures an observation for an endpoint associated to the multicast IP address

– Accepts observe notifications with Token value T, sent to that multicast IP address

Interac
on with clients

IETF 108 | CoRE WG | 2020-07-31 | Page 13

C1 registra
on

IETF 108 | CoRE WG | 2020-07-31 | Page 14

C1 registra
on

IETF 108 | CoRE WG | 2020-07-31 | Page 15

C2 registra
on

IETF 108 | CoRE WG | 2020-07-31 | Page 16

Mul
cast no
�ca
on

› Same Token value of the Phantom Request

› Enforce binding between

– Every multicast notification for the target resource

– The (group) observation that each client takes part in

IETF 108 | CoRE WG | 2020-07-31 | Page 17

Security with Group OSCORE
› The phantom request is protected with Group OSCORE

– x : the Sender ID (‘kid’) of the Server in the OSCORE group

– y : the current SN value (‘piv’) used by the Server in the OSCORE group

– Note: the Server consumes the value y and does not reuse it as SN in the group

› To secure/verify all multicast notifications, the OSCORE external_aad is built with:

– ‘req_kid’ = x

– ‘req_piv’ = y

› The phantom request is still included in the informative response

– Each client retrieves x and y from the OSCORE option

IETF 108 | CoRE WG | 2020-07-31 | Page 18

Security with Group OSCORE
› In the error response, the server can optionally specify also:

– ‘join-uri’ : link to the Group Manager to join the OSCORE group

– ‘sec-gp’ : name of the OSCORE group

– ‘as-uri’ : link to the ACE Authorization Server associated to the Group Manager

– ‘cs-alg’ : countersignature algorithm

– ‘cs-alg-crv’ : countersignature curve of the algorithm

– ‘cs-key-kty’ : countersignature key type

– ‘cs-key-crv’ : countersignature curve of the key

– ‘cs-kenc’ : countersignature key encoding

– ‘alg’ : AEAD algorithm

– ‘hkdf’ : HKDF algorithm

› Clients can still discover the OSCORE group through other means

– E.g., using the CoRE Resource Directory, as in draft-tiloca-core-oscore-discovery

MUST

MAY

IETF 108 | CoRE WG | 2020-07-31 | Page 19

C1 registra
on w/ security

IETF 108 | CoRE WG | 2020-07-31 | Page 20

C1 registra
on w/ security

 5: Sender ID (‘kid’) of S in the OSCORE group

501: Sequence Number of S in the OSCORE

group

 when S created the group observation

IETF 108 | CoRE WG | 2020-07-31 | Page 21

C2 registra
on w/ security

 5: Sender ID (‘kid’) of S in the OSCORE group

501: Sequence Number of S in the OSCORE

group

 when S created the group observation

IETF 108 | CoRE WG | 2020-07-31 | Page 22

Mul
cast no
�ca
on w/ security

› When encrypting and signing the multicast notification:

– The OSCORE external_aad has ‘req_kid’ = 5 and ‘req_iv’ = 501

– Same for all following notifications for the same resource

› Enforce secure binding between

– Every multicast notification for the target resource

– The (group) observation that each client takes part in

Observe No
�ca
ons as
CoAP Mul
cast Responses

draft-tiloca-core-observe-multicast-notifications-03

Marco Tiloca, RISE
Rikard Höglund, RISE

 Chris�an Amsüss
Francesca Palombini, Ericsson

IETF 108, CoRE WG, July 31st, 2020

IETF 108 | CoRE WG | 2020-07-31 | Page 2

Recap
› Observe notifications as multicast responses

– Many clients observe the same resource on a server S

– Improved performance due to multicast delivery

– Multicast responses are not defined yet. Token binding? Security?

› Example use case

– Pub-Sub scenario

– Many clients subscribe to

 a same topic on the Broker

– Better performance

– Subscribers are clients only

From the Hallway Discussion @ IETF 104

IETF 108 | CoRE WG | 2020-07-31 | Page 3

› Define Observe notifications as multicast responses

› Token space from a group to a particular server

– The Token space belongs to the group (clients)

– The group entrusts the management to the server

– All clients in a group observation use the same Token value

› Group OSCORE to protect multicast notifications

– The server aligns all clients of an observation on a same external_aad

– All notifications for a resource are protected with that external_aad

Proposed approach

IETF 108 | CoRE WG | 2020-07-31 | Page 4

› The server can start a group observation for a resource, e.g. :

1. With no observers yet, a traditional registration request comes from a first client

2. With many traditional observations, all clients are shifted to a group observation

› Consensus on token / external_aad by creating a Phantom observation request
– Generated inside the server, it does not hit the wire

– Like if sent by the group, from the multicast IP address of the group

– Multicast notifications are responses to this phantom request

› To the unicast request, the server sends a 5.03 error response with:
– Serialization of the phantom request

– IP multicast address where notifications are sent to

– Serialization of the latest multicast notification (i.e. current resource status)

Phantom request and error response

IETF 108 | CoRE WG | 2020-07-31 | Page 5

› Revised encoding of the error response

› Parameter meaning

– ph_req : serialization of the phantom request

– last_notif : serialization of the latest sent multicast notification

– cl_addr , cl_port: source address/port of the phantom request

→ Destination address/port of the multicast notifications

– srv_addr , srv_port: destination address/port of the phantom request

› ‘last_notif’ gives clients:

– The current representation of the target resource

– A baseline for the Observe number of following multicast notifications

– May become optional – opinions?

› When creating the observation, the server creates and stores a first ‘last_notif’

Updates overview
Informative error response

IETF 108 | CoRE WG | 2020-07-31 | Page 6

› Improved rough counting of active clients

– Poll for interest, using a new CoAP option in successful multicast notifications

› Server current rough estimate: N

– Expected confirmations M < N

– Option value: Q = ceil (N / M)

– Each client picks a random I : [0, Q)

– If I == 0, the client sends a re-registration request

› Non Confirmable; w/ No-Response; w/ the new Option having empty value

› Given explicit indications to prevent Smurf attacks

– The server receives R of such requests; X new clients have registered in the meanwhile

› Added a server timeout, building on RFC 7252 and core-groupcomm-bis parameters

– Then N := (R * Q) + X

› The new Appendix A describes the algorithm in pseudo-code

Updates overview

IETF 108 | CoRE WG | 2020-07-31 | Page 7

› Alternative ways to retrieve a phantom request

– Revised examples in Appendix B

– Pub-Sub (phantom request as part of topic metadata)

– Sender introspection of intercepted notifications

› Congestion control

– Added text about broadcast storm

› Clarifications on Group OSCORE

– The group mode is the one to use

Updates overview

IETF 108 | CoRE WG | 2020-07-31 | Page 8

› Multicast notifications to all clients observing a resource

› Latest additions

– Improved encoding of error response

– Improved rough counting of clients

– Clarifications and editorial revision

› Next steps

– Cover a scenario where a Proxy is used

– Align concepts with draft-amsuess-core-cachable-oscore

› Need for document reviews

Summary

Thank you!

Comments/ques
ons?

 https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast

https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast

Backup

IETF 108 | CoRE WG | 2020-07-31 | Page 11

1. Build a GET phantom request; Observe option set to 0

2. Choose a value T, from the Token space for messages …
– … coming from the multicast IP address and addressed to target resource

3. Process the phantom request
– As coming from the group and its IP multicast address

– As addressed to the target resource

4. Hereafter, use T as token value for the group observation

5. Store the phantom request, with no reply right away

Server side

IETF 108 | CoRE WG | 2020-07-31 | Page 12

› The server sends to new/shifted clients an error response with
– ‘ph_req’: serialization of the phantom request

– ‘last_notif’: serialization of the latest sent notification for the target resource

– ‘cli_addr’ and ‘cli_port’: source address/port of the phantom request

– ‘srv_addr’ and ‘srv_port’: destination address/port of the phantom request

› When the value of the target resource changes:
– The server sends an Observe notification to the IP multicast address ‘cli_addr’

– The notification has the Token value T of the phantom request

› When getting the error response, a client:
– Configures an observation for an endpoint associated to the multicast IP address

– Accepts observe notifications with Token value T, sent to that multicast IP address

Interac
on with clients

IETF 108 | CoRE WG | 2020-07-31 | Page 13

C1 registra
on

IETF 108 | CoRE WG | 2020-07-31 | Page 14

C1 registra
on

IETF 108 | CoRE WG | 2020-07-31 | Page 15

C2 registra
on

IETF 108 | CoRE WG | 2020-07-31 | Page 16

Mul
cast no
�ca
on

› Same Token value of the Phantom Request

› Enforce binding between

– Every multicast notification for the target resource

– The (group) observation that each client takes part in

IETF 108 | CoRE WG | 2020-07-31 | Page 17

Security with Group OSCORE
› The phantom request is protected with Group OSCORE

– x : the Sender ID (‘kid’) of the Server in the OSCORE group

– y : the current SN value (‘piv’) used by the Server in the OSCORE group

– Note: the Server consumes the value y and does not reuse it as SN in the group

› To secure/verify all multicast notifications, the OSCORE external_aad is built with:

– ‘req_kid’ = x

– ‘req_piv’ = y

› The phantom request is still included in the informative response

– Each client retrieves x and y from the OSCORE option

IETF 108 | CoRE WG | 2020-07-31 | Page 18

Security with Group OSCORE
› In the error response, the server can optionally specify also:

– ‘join-uri’ : link to the Group Manager to join the OSCORE group

– ‘sec-gp’ : name of the OSCORE group

– ‘as-uri’ : link to the ACE Authorization Server associated to the Group Manager

– ‘cs-alg’ : countersignature algorithm

– ‘cs-alg-crv’ : countersignature curve of the algorithm

– ‘cs-key-kty’ : countersignature key type

– ‘cs-key-crv’ : countersignature curve of the key

– ‘cs-kenc’ : countersignature key encoding

– ‘alg’ : AEAD algorithm

– ‘hkdf’ : HKDF algorithm

› Clients can still discover the OSCORE group through other means

– E.g., using the CoRE Resource Directory, as in draft-tiloca-core-oscore-discovery

MUST

MAY

IETF 108 | CoRE WG | 2020-07-31 | Page 19

C1 registra
on w/ security

IETF 108 | CoRE WG | 2020-07-31 | Page 20

C1 registra
on w/ security

 5: Sender ID (‘kid’) of S in the OSCORE group

501: Sequence Number of S in the OSCORE

group

 when S created the group observation

IETF 108 | CoRE WG | 2020-07-31 | Page 21

C2 registra
on w/ security

 5: Sender ID (‘kid’) of S in the OSCORE group

501: Sequence Number of S in the OSCORE

group

 when S created the group observation

IETF 108 | CoRE WG | 2020-07-31 | Page 22

Mul
cast no
�ca
on w/ security

› When encrypting and signing the multicast notification:

– The OSCORE external_aad has ‘req_kid’ = 5 and ‘req_iv’ = 501

– Same for all following notifications for the same resource

› Enforce secure binding between

– Every multicast notification for the target resource

– The (group) observation that each client takes part in

Proxy Operations for
CoAP Group Communication

draft-tiloca-core-groupcomm-proxy-01

Marco Tiloca, RISE
Esko Dijk, IoTconsultancy.nl

IETF 108, CoRE WG, July 31st, 2020

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 2

› CoAP supports group communication over IP multicast
– draft-ietf-core-groupcomm-bis

› Issues when using proxies
– Clients to be allow-listed and authenticated on the proxy
– The client may receive multiple responses to a single unicast request
– The client may not be able to distinguish responses and origin servers
– The proxy does not know when to stop handling responses

› Possible approaches for proxy to handle the responses
– Individually forwarded back to the client
– Forwarded back to the client as a single aggregated response

Recap

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 3

› Description of proxy operations for CoAP group communication
– Addressed all issues in draft-ietf-core-groupcomm-bis
– Signaling protocol with two new CoAP options
– Responses individually forwarded back to the client

› The proxy is explicitly configured to support group communication
– Clients are allowed-listed on the proxy, and identified by the proxy

› Version -01 addresses Christian’s review [1] – Thanks!
– Revised properties and usage of the two CoAP options
– “Nested OSCORE” (Appendix A), if OSCORE is used between Client and Proxy

[1] https://mailarchive.ietf.org/arch/msg/core/AwYqnQu703V5RGR43JQxRslkYsw/

Contribution

https://mailarchive.ietf.org/arch/msg/core/AwYqnQu703V5RGR43JQxRslkYsw/

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 4

› In the request addressed to the proxy, the client indicates:
– To be interested in and capable of handling multiple responses
– For how long the proxy should collect and forward back responses

› In a response to a group request, the proxy includes the server address
– The client can distinguish the responses and the different servers
– The client can contact an individual server (directly, or via the proxy)

› Group OSCORE for e2e security between client and servers

Rationale

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 5

› Used only in requests
– Presence: explicit claim of support and interest from the client
– Value: indication to the proxy on how long to handle unicast responses

› The proxy removes the option, before forwarding the request

Multicast-Signaling option

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 6

Response-Forwarding option

› Used only in responses
– Presence: allows the client to distinguish responses and originator servers
– Value: absolute URI of the server (address and port from the response)

› The proxy adds the option, before forwarding the response to the client

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 7

› C prepares a request addressed to P
– The group URI is included in the Proxi-Uri option or the URI-* options

› C chooses T seconds, as token retention time
– T < Tr , with Tr = token reuse time
– T considers processing at the proxy and involved RTTs

› C includes the Multicast-Signaling option, with value T′ < T

› C sends the request to P via unicast
– C retains the token beyond the reception of a first matching response

Workflow: C -> P

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 8

› P identifies C and verifies it is allowed-listed

› P verifies the presence of the Multicast-Signaling option
– P extracts the timeout value T′
– P removes the Multicast-Signaling option

› P forwards the request to the group of servers, over IP multicast

› P will handle responses for the following T′ seconds
– Observe notifications are an exception – they are handled until the Observe

client state is cleared.

Workflow: P -> S

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 9

› S processes the request and sends the response to P

› P includes the Response-Forwarding option in the response
– The option value is absolute URI of the server
– IP address: source address of the response
– Port number: source port number of the response

Workflow: S -> P

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 10

› P forwards responses back to C, individually as they come

› P frees-up its token towards the group of servers after T′ seconds
– Later responses will not match and not be forwarded to C
– Observe notifications are the exception

› C retrieves the Response-Forwarding option
– C distinguishes different responses from different origin servers
– C is able to later contact a server individually (directly or via the proxy)

› C frees-up its token towards the proxy after T seconds
– Observe notifications are the exception

Workflow: P -> C

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 11

› P has to authenticate C
– A DTLS session would work
– If Group OSCORE is used with the servers

› P can check the counter signature in the group request
› P needs to store the clients’ public keys used in the OSCORE group
› P may be induced to forward replayed group requests to the servers

› Appendix A – OSCORE between C and P
– If Group OSCORE is also used between C and the servers

1. Protect the group request with Group OSCORE (C<->Servers context)
2. Protect the result with OSCORE (C<->P context)

- Some class U options are processed as class E options
3. Reverse processing for responses

“Nested OSCORE”

draft-tiloca-core-groupcomm-proxy-01 | IETF 108 | CoRE WG | July 31st, 2020 Page 12

› Proxy operations for CoAP group communication
– Embedded signaling protocol, using two new CoAP options
– The proxy forwards individual responses to the client for a signaled time
– The client can distinguish the origin servers and corresponding responses

› Next steps
– Cover the case with a chain of proxies
– Define HTTP headers for Cross-Proxies

› Need for reviews

Summary

Thank you!

Comments/questions?

https://gitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy

https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast
https://gitlab.com/crimson84/draft-tiloca-core-observe-responses-multicast

Cachable OSCORE
draft-amsuess-core-cachable-oscore

Christian Amsüss, Marco Tiloca

2020-07-31

Background

multicast-notifications

Comparison with ICNs
OSCON

Caching and OSCORE

POST / 2.01
KID and PIV in request

�
uncachable

. . . and it’s only one client anyway

For every complex problem, there is a solution. . .
that is simple, neat and wrong insu�cient

Group OSCORE
FETCH / 2.05
magically hit cache

9
=

; verification fails

Consensus request

I Pick request sender KID and PIV

I Trust in the request1

The ideal candidate to generate a Consensus Request is the server:
“Ticket Requests”

1It’d be a pity if someone requested /whom-i-know, and gave you the response claiming they
requested /whom-to-trust

Ticket Request example

Client Proxy Server

enc(GET /a, C:1) ------------------------->

<--------- enc(Try enc(GET /a, S:1), S/C:1)

enc(GET /a, S:1) ------>

(cache hit)

<--- enc(2.05 data, S:2)

Assuming pre-existing multicast setup

multicast-notifications’s Phantom Requests are Ticket Requests

1. Great for observations

2. Great for large representations2

3. Not so great for everything else

2Unless outer-block mode is used. Which you want. In which case see 3.

Magically hitting the cache key

Client Proxy

enc(GET /a, C:1), H(/a) ------------------>

<- enc(2.05 data, S:2) Resp-For enc(GET /a, S:1)

. . . provided H(/a) is derived the same for every request

(actually it’s rather hashing the complete plaintext|AAD)

Now that we all agree. . .

Client Proxy

enc(GET /a, C:H(/a)) ------------------->

<-------------------- enc(2.05 data, S:1)

I Hash over all input to encryption (incl. AAD)

I PartIV too short for su�cient hash – ID-Detail3

I In group it’s encrypt-and-sign – deterministic client with private
key known to group members

3Also very nice for B.2 mode

Now that we all agree. . .

Client Proxy

enc(GET /a, C:H(/a)) ------------------->

<-------------------- enc(2.05 data, S:1)

I Hash over all input to encryption (incl. AAD)

I PartIV too short for su�cient hash – ID-Detail3

I In group it’s encrypt-and-sign – deterministic client with private
key known to group members

3Also very nice for B.2 mode

Questions

I Practicality

I Cryptography

I Interest in CoRE

Thank you!
Comments/questions?

