
SFrame
E2EE for Video Conferencing

IETF 108 Dispatch
emadomara@google.com

Goals

● Security
○ Secure end to end communications between the end points

● Simplicity
○ Minimize the changes needed in the group media server and end points

● Efficiency
○ Minimized the encryption overhead between the endpoints

● Compatibility
○ Works with existing RTC protocols like WebRTC
○ Works with RTC error correction mechanisms like FEC and RTX

● Transport agnostic

Conference Calls System Overview

● Endpoints sends multiple media
streams to a central media server

● These streams are encrypted to the
server HBH like DTLS-SRTP

● The server routes the streams to other
endpoints in the call

● The server has access to the entire
media contents

SFrame (Secure Frame)

● Mechanism to efficiently encrypt RTC traffic end
to end

○ Encrypts the entire media frame rather than
individual packets to minimize the
overhead

○ Exposes only the metadata needed by the
server to route the streams

○ Individual packets are still HBH encrypted
● SFrame keys are exchanged securely out of

band between the endpoints
○ Each user has their own key to encrypt

their outgoing traffic
○ Can be used with any KMS like Signal or

MLS
○ Keys are exchanged via the signaling

channel at the call setup and when the call
participants changes

● The server can only access the media metadata
but can not access the media contents

SFrame in WebRTC

● SFrame works with existing RTC
frameworks like WebRTC

● The encryptor in injected after the
frame is encoded and before it is
packetized

● Media metadata are passed to the
server using a special RTP header
extension

● The server can construct the
encrypted frame without access the
contents

Encryption Schema

● Each endpoint creates and
securely exchange their master key

● From the master key, SFrame
derives 3 keys

○ Encryption key to encrypt the media
frame

○ Authentication key to authenticate the
encrypted frame. SFrame header and
the media metadata

○ Salt key to derive the IV
● The entire payload is then split into

smaller packets

Wire Format

SFrame payload

SFrame short header

SFrame long header

Encryption Overhead

● The encryption overhead mostly comes from the IV and authentication tag

● SFrame beats existing E2EE protocols because the overhead is amortized
over the frame instead of per-packets

● SFrame also uses var-int encoding for the IV to reduce the overhead even
more

Current Status

● Specs
○ SFrame draft

■ Mostly complete
■ Signature schema and keyID still WIP

○ Other documents needed
■ MLS-SFrame

● KMS integration document
■ WebRTC-SFrame

● The changes needed to WebRTC to support SFrame
○ Payload type
○ RTP metadata header ext

● Implementation
○ Implemented and launched in Google Duo since April 2019
○ Believe other implementations will be out soon

Next steps

● Are people interested in this?

● If Yes, where this should go ?
i. New WG
ii. Existing WG

Questions ?

Please submit your questions to

sframe@ietf.org

