DNS Zone Transfer-over-TLS (XoT)

draft-ietf-dprive-xfr-over-tls

Sara Dickinson

Willem Toorop Shivan Sahib Pallavi Aras Allison Mankin

XoT - Background

Why XoT?

- Zone data can be collected via passive monitoring on-the-wire
- Zone owner may desire privacy for personal, organizational, or regulatory/policy reasons
- The main motivation for XoT is to prevent zone data collection during transfer

What is XoT?

- Encryption of DNS zone transfer (AXFR & IXFR) using TLS as a transport
- Draft adopted by DPRIVE in Nov 2019

Use cases

- Confidentiality: Encrypting zone transfers will defeat zone content leakage that can occur via passive surveillance
- Authentication: Use of single or mutual TLS authentication can complement TSIG/ACLs
- Performance:
 - Existing XFR implementation must be backwards compatible [RFC1034]/[RFC1035]
 - Current usage of TCP for IXFR is sub-optimal in some cases
 e.g. TCP connections are frequently closed after a single IXFR

IXFR: Existing mechanisms vs IXoT

Existing

XOT-Based IXFR

IXFR: Existing mechanisms vs IXoT

IXFR: Existing mechanisms vs IXoT

-02 updates (July 2020)

- ALPN: Introduced use of 'xot' ALPN and term 'XoT connection'- for *XFR + SOA only
 - o RFC5936 states 'Non-AXFR session traffic can also use an open connection.'
 - Currently no RFC for recursive to auth encryption (ADoT)....
 - Want to remove any assumption/dependency on ADoT solution or deployment
 - ALPN removes any requirement on the authoritative to (indirectly) support DoT
 - Server SHOULD REFUSE other queries (with extended error code 'Not supported')

- RFC7766 (TCP) Tried to address issues around num of client/server connections
 - "...SHOULD be...one for regular queries, one for zone transfers for TCP..."
 - "... and one for each protocol that is being used on top of TCP..."
 - XoT draft updates this so all transports behave the same

-02 updates (July 2020)

- -02 minimally updates RFC1995 (IXFR) to clarify SHOULD do connection reuse (RFC7766)
- -02 discusses RFC5936 (AXFR) but does not currently update
- Both mechanisms are optimised specifically for XoT use case
- New (limited) discussion of padding
 - o In -02 only the goals of padding and minimum requirements are discussed
 - Currently identified a need to receive 'empty' AXFRs to future proof padding
 - Traffic analysis and padding policies will be addresses in a separate draft

More recent questions/comments

- Review pointed to the need to revise the proposed updates to both RFC1995 (IXFR) & RFC5936 (AXFR)
 - Clarification of behaviour on a single connection when intermingling both IXFR and AXFR
- Review requested more discussion of limits on transfer rates or concurrent AXFRs
 - BIND has some controls for this already
 - Is more signalling from primary on transfer rate and concurrency limits useful?
 - Allows primary to throttle transfer rates when under heavy load
 - This could influence which primary is used and therefore allow load balancing

More recent questions/comments

- Better analysis of 'non-Strict XoT' use cases
 - Any need to allow fallback to TCP?
 - Handy on primary during testing/rollout (but allows downgrade, so block on secondary?)
- Clarify server cert config options:
 - e.g. one XoT cert (multiple SANs?) vs one per zone
 - Beyond server certs, mutual TLS is discussed as an additional option...
- Name compression limits packet size to ~16k because of the size of the compression pointer
 - For XoT is an option to disable this and have 64k packets beneficial?

Moving forward

- Spec is maturing more reviews please!!
- Implementations work starting on NSD patch, discussions with ISC on BIND support
- Future interop on this would be really beneficial
- Aware of a demand to deploy this
- Hopefully looking for WGLC in IETF 109 timeframe

Moving forward

- Spec is maturing more reviews please!!
- Implementations work starting on NSD patch, discussions with ISC on BIND support
- Future interop on this would be really beneficial
- Aware of a demand to deploy this
- Hopefully looking for WGLC in IETF 109 timeframe

Questions Please!

Additional Slides

XoT - Authentication mechanisms

Method		Secondary			Primary		
		Data Auth	Channel Conf	Channel Auth	Data Auth	Channel Conf	Channel Auth
TSIG							
TLS	Орро						
	Strict						
	Mutual						
ACL on master							

Conclusion: Using TSIG, Strict TLS and an ACL on the primary provides all 3 properties for both parties with reasonable overhead

Policy Management for XoT

- 'Transfer Group' entire group of servers involved in transfers of a given zone (all primaries, all secondaries)
- The entire transfer group SHOULD have the same policy wrt (no weak point):
 - o TSIG, TLS (O, S or m), IP ACL
- CHALLENGE: How to configure, enforce and test policy implementation?
 - Often involves different operators, different software, hidden servers
 - Feedback please

Padding experiments

IXFR transfer sizes and rates are VERY context specific. Re-using connections for multiple zones hides patterns.

Update rate	Zone size	DNSSEC	Update frequency	Order of Update size (bytes)
Low		*	Low	100s
Low	Very Large	000	High	1,000s
High		•••	High	10,000+

Jittered resigning

RRSIGs still significant

Simplest IXFR pattern (unsigned zone with regular updates)

- Unsigned zone with records added every 10 seconds
- Smallest XFR response packet possible would be 5 records:
 - 1 new record
 - 4 SOAs
- Order of few hundred bytes (~250 in this case)
- Packet size can indicate record changes but adding and changing are hard to distinguish (and name compression happens)

Multiple IXFRs for large DNSSEC NSEC3 signed zone (one update shown)

- Periodic resigning dominates
- Transfers every 5s, on a separate TCP connection
- Responses clustered around multiples of 3k bytes (1 SOA change) note no condensation of changes
- Anomaly at 77s is caused by a single record update to the zone