
The road to RFC

draft-ietf-mls-protocol



Recent Work



Since draft-09...

8 virtual interims

32 pull requests merged

6 new contributors

@uhoreg

@chelseakomlo@arianvp

@d1vyank @ericcornelissen

@tomtau



PRs since draft-09

● #308 - Remove nonce from SenderData AAD.
● #317 - Change expiration extension to lifetime extension.
● #318 - Fix markdown formatting issue for Ciphersuite section
● #319 - Use correct type for uint32.
● #321 - Extensions -> Extension
● #322 - Minor fix
● #329 - Rename messaging service to service provider
● #330 - Minor fixes
● #331 - Make ratcheting optional for Adds
● #334 - Explicitly state the order in which proposals are applied 

when creating a commit
● #335 - Fix HPKE setup function name
● #338 - Rely More on HPKE
● #339 - Upper bound on group size in early phase too low
● #341 - Fix in lifetime extension
● #342 - Allow external proposals to be signed.
● #343 - Upper bound for Commit

● #348 - Make the tree in the Welcome optional
● #350 - IANA updates and their consequences
● #352 - Use node_index for both hashes
● #353 - Explain the meaning of a Commit with no proposals
● #354 - misc little fixes
● #355 - Validate external proposals from preconfigured 

senders
● #356 - Minor editorial changes
● #357 - Fix all compiler warnings.
● #358 - Fix build by switching to GitHub actions
● #359 - Fix bugs in tree math and cleanup docs.
● #361 - Use correct arguments to Derive-Secret
● #363 - Fix compile errors again.
● #364 - Use the KDF from HPKE
● #370 - Minor extension fixes
● #371 - Define HPKE on first use
● #372 - Commit Generation Clarifications



Relying more on HPKE

HPKE started off as just a base encrypt-to-public-key mechanism

It has grown to cover most of the primitives we need:

KDF, AEAD, Derive-Key-Pair (Signatures still from TLS)

Less spec text

Better agility



Make ratcheting optional for Adds 

“Proposal/Commit will make Adds O(log N) instead of O(1), but if that’s an issue, 
we can always special-case Add-only Commits.”
-- R. Barnes (probably), circa Nov. 2019

It’s an issue: In large, infrequently-updating groups, its O(N)
… so we added special case logic for it

No PCS on Add-only commit, only FS w.r.t. new members (PCS iff path)



Make the tree optional in GroupInfo

New joiners to the group need to know the tree

But the tree is (a) big to upload and (b) cacheable; send a commitment instead

Joiner needs to get the tree before processing the Welcome



The Road to RFC



Pace of major 

changes has slowed

Time to start 

wrapping up...



Protocol Changes

Non-protocol Fixes

Working Group Last Call

Formal Verification

IETF Last Call
IESG Submission

AD Review
IESG Approval

RFC Editor Queue
RFC

draft-10, ETA Aug.

How long?

Repeat as
necessary



Remaining Issues + PRs



Confirmed Protocol Issues (binned, [PRs])

● Update the key schedule to reflect reality [#362, #336]
○ #325 - Simplify epoch secret derivation?
○ #326 - Authenticate that added members know the PSK

● #302 - Use masking instead of AES-GCM for sender data [#360]
● Make MLSCiphertext fully opaque [#349]

○ #142 - Prevent suppression of Handshake messages
○ #269 - Randomize values in the common framing header

● PSKs, session resumption, and authentication
○ #366 - Add extensions to the Commit message [#369]
○ #367 - Negotiate PSKs
○ #368 - Proof of prior membership in the group / Resumption
○ #374 - Derive an "authentication secret"



Uncertain and Non-Protocol Issues

● #160 - Advertize a global app generation for a sender
● #373 - Address DoS by malicious insiders
● Post-protocol-completion editorial review

○ #365 - Update security considerations
○ #273 - Editorial: structure of the document
○ #168 - Clarify obligation of clients to Update

… anything else?



Reflecting reality in the key schedule

Current key schedule has a few problems:

1. When a PSK is used, it doesn’t authenticate that new joiners know it
2. The GroupContext gets used in a bunch of individual derivations

Proposed solutions:

1. Reorder so that the joiner has to use the PSK to get the epoch secret
2. Add the GroupContext once, into the epoch_secret





Simplifying sender data encryption

Goal: Prevent DS from seeing sender and generation

First attempt: “Masking” à la QUIC 

sample ciphertext => KDF => XOR

Concerns about lack of authn

Second attempt: Sample AEAD nonce from ciphertext

Saves explicit sender_data_nonce, still AEAD





Swap order 
of content, 
metadata 
encryption Sample sender data 

nonce from content 
ciphertext



Simplifying sender data encryption

Benefit: No explicit nonce

Nothing for adversary to tamper with

No need for more entropy

Cost: Sampling from ciphertext?

Should effectively be a random nonce …?

Proposal: Do ~this or do nothing



Make MLSCiphertext fully opaque

MLSCiphertext still exposes group ID, epoch, and content type

Proposal: Render these opaque to the DS

(group ID, epoch) -> HKDF(epoch_secret, “epoch ID”, epoch_id_len)

content_type moves inside encrypted content

Pro: Reveals minimum necessary information by default

Con: Adversarial collisions can cause partial DoS



PSKs, Session Resumption, and Authentication

Britta and Konrad proposed a bunch of changes in #336, addressing a few 
different use cases, including:

● Authentication that a member was part of the group in the past
● Verifying OOB that two members have the same view of the group

Proposal: splitting these out into more incremental chunks:

● Adding extensions to Commit
● Enabling negotiation of PSKs
● “Resumption” via PSKs generated off of the key schedule
● Deriving “authentication secret” from the epoch secret



fin


