
NTPv5 Modular Architecture

• Proposal: Define NTPv5 as two interacting subsystems
• Timing engine
• protocol engine

• Purpose: allow different timing engines to be defined for different 
applications
• For example, General purpose IT (time for logfiles, security ticket times outs, 

…)
• For example, precision timing for financial networks

• Purpose: allow different protocol engines to be defined for different 
applications
• For example, with and without security
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Server Functional Block diagram
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Functional Block Diagram Notes

• Local clocks
• OS system clock (SW timestamps)
• Steerable counter on a PHY chip (HW timestamps)
• Custom HW clock.  Often implemented in time servers or cyber physical 

systems

• Timing engine 
• Clients do not need to read local clock, only to determine its offset via NTP
• Server needs to read local clocks to steer them to the timing reference
• Timing reference: GNSS receiver, PTP input, 1PPS input, etc



Protocol Engine

• Interfaces with network stack
• Builds packets for transmission
• Software layer timestamps
• Parses packets upon receipt

• Executes network security
• Determines when to send packets
• Based on average packet rate from timing engine

• Passes received information to timing engine
• Timestamps and timing metadata
• Message status, such as expected message not received, security working, etc



Timing engine

• Selects servers to receive time from
• Allows for optimization based on analysis of timing data

• Analyze received timing information
• Outlier detection and removal
• False ticker identification and removal
• Lucky packet pre-filters
• Generate timing statistics

• Clock control
• PLL filter
• Clock corrections

• Report statistics to management interface



Timing engine - protocol engine interface

From timing engine
• List of target server IP addresses
• Average packet time interval for 

each server

From protocol engine
• Server not responding flags
• Received packet data
• Four timestamps
• Root delay & root dispersion
• Reference ID
• Leap second flag
• Server stratum
• Security on/off flag



Feedback welcome

• Thanks to Ulrich Windl, and Hal Murry for astute questions and 
suggestions

• Looking for coauthors for a draft architecture document

• doug.Arnold@meinberg-usa.com


