
NTPv5 Modular Architecture

• Proposal: Define NTPv5 as two interacting subsystems
• Timing engine
• protocol engine

• Purpose: allow different timing engines to be defined for different
applications
• For example, General purpose IT (time for logfiles, security ticket times outs,

…)
• For example, precision timing for financial networks

• Purpose: allow different protocol engines to be defined for different
applications
• For example, with and without security

Client Functional Block diagram

Management Interface

Timing engine Protocol engine

OS clock Network stack

config config Packet
data

Timing
data

Clock
corrections

Packets
sw

timestamps

hw
timestamps

NTPv5

PHY clock

Timing
Protocol
interface

Alternatively
Mgmt could
Have separate
Network stack

Server Functional Block diagram

Management Interface

Timing engine Protocol engine

OS clock Network stack

config config Packet
data

Timing
data

Timestamps,
corrections

Packetssw
timestamps

hw
timestamps

N
T
P
v
5

PHY clock

Timing
Protocol
interface

Alternatively
Mgmt could
Have separate
Network stack

Timing
Reference

Time,
status

Config,
status

Functional Block Diagram Notes

• Local clocks
• OS system clock (SW timestamps)
• Steerable counter on a PHY chip (HW timestamps)
• Custom HW clock. Often implemented in time servers or cyber physical

systems

• Timing engine
• Clients do not need to read local clock, only to determine its offset via NTP
• Server needs to read local clocks to steer them to the timing reference
• Timing reference: GNSS receiver, PTP input, 1PPS input, etc

Protocol Engine

• Interfaces with network stack
• Builds packets for transmission
• Software layer timestamps
• Parses packets upon receipt

• Executes network security
• Determines when to send packets
• Based on average packet rate from timing engine

• Passes received information to timing engine
• Timestamps and timing metadata
• Message status, such as expected message not received, security working, etc

Timing engine

• Selects servers to receive time from
• Allows for optimization based on analysis of timing data

• Analyze received timing information
• Outlier detection and removal
• False ticker identification and removal
• Lucky packet pre-filters
• Generate timing statistics

• Clock control
• PLL filter
• Clock corrections

• Report statistics to management interface

Timing engine - protocol engine interface

From timing engine
• List of target server IP addresses
• Average packet time interval for

each server

From protocol engine
• Server not responding flags
• Received packet data
• Four timestamps
• Root delay & root dispersion
• Reference ID
• Leap second flag
• Server stratum
• Security on/off flag

Feedback welcome

• Thanks to Ulrich Windl, and Hal Murry for astute questions and
suggestions

• Looking for coauthors for a draft architecture document

• doug.Arnold@meinberg-usa.com

