NTPv5 Modular Architecture

* Proposal: Define NTPv5 as two interacting subsystems
* Timing engine
* protocol engine
* Purpose: allow different timing engines to be defined for different

applications
* For example, General purpose IT (time for logfiles, security ticket times outs,

)

* For example, precision timing for financial networks

* Purpose: allow different protocol engines to be defined for different
applications
* For example, with and without security



Client Functional Block diagram Aternatively

Mgmt could
Have separate
Network stack

Management Interface

/ . . \\
’ Timing config config Packet ‘.
. data Timing data ,
! I
! Protocol !
; interface ,
\ NTPvS Timing engine Protocol engine !
| :
! I
: Clock SW '
: oc - Packets :
Y corrections Imestamps Y

OS clock PHY clock Network stack

hw
timestamps



Server Functional Block diagram Aternatively

Mgmt could
Config, Have separate
status Network stack
Management Interface
< I e Y .
’ Timing config config chket ‘.
' N data Timing ata |
VT Protocol !
: P interface , l
! Protocol engine :
1 VvV ,
1
s ’
|
: Timestamps, SW Packets !
: corrections timestamps K

Timing
Reference

OS clock PHY clock Network stack

hw
timestamps



Functional Block Diagram Notes

* Local clocks
* OS system clock (SW timestamps)
» Steerable counter on a PHY chip (HW timestamps)

e Custom HW clock. Often implemented in time servers or cyber physical
systems

* Timing engine
* Clients do not need to read local clock, only to determine its offset via NTP

* Server needs to read local clocks to steer them to the timing reference
* Timing reference: GNSS receiver, PTP input, 1PPS input, etc



Protocol Engine

* Interfaces with network stack
* Builds packets for transmission
e Software layer timestamps
* Parses packets upon receipt

 Executes network security

* Determines when to send packets
* Based on average packet rate from timing engine

* Passes received information to timing engine

* Timestamps and timing metadata
* Message status, such as expected message not received, security working, etc



Timing engine

 Selects servers to receive time from
» Allows for optimization based on analysis of timing data

* Analyze received timing information
e QOutlier detection and removal
 False ticker identification and removal
e Lucky packet pre-filters
* Generate timing statistics

e Clock control
e PLL filter
* Clock corrections

* Report statistics to management interface



Timing engine - protocol engine interface

From timing engine From protocol engine
* List of target server IP addresses ¢ Server not responding flags

* Average packet time interval for ¢ Received packet data
each server * Four timestamps
Root delay & root dispersion
* Reference ID
* Leap second flag
* Server stratum
 Security on/off flag



Feedback welcome

* Thanks to Ulrich Windl, and Hal Murry for astute questions and
suggestions

* Looking for coauthors for a draft architecture document

* doug.Arnold@meinberg-usa.com



