# Trust Token

IETF 108 – Virtual – 2020-07

Steven Valdez - svaldez@google.com

#### Outline

- Problem
- Old Way
- New Way (Privacy Pass)
- Trust Token

#### **Problem**

- Protection against:
  - (D)DoS protection
  - Bots
  - Spam
- Avoid pain for legitimate users.
- Avoid relying on cross-site tracking/fingerprinting.

### Old Way (1)

- 1. Request content from website, get asked to complete a CAPTCHA.
- Ask the Trust Provider for a CAPTCHA challenge.
- Send the response and receive a challenge verification and some state the client keeps.
- 4. Send the challenge verification with the request to the Protected content.



### Old Way (2)

- 1. Request content from website, get asked to complete a CAPTCHA.
- Ask the Trust Provider for a CAPTCHA challenge including your 3P state. The Trust Provider skips (or simplifies) the challenge/response and returns a challenge verification.
- 3. Send the challenge verification with the request to the Protected content.



#### **New Way**

- Instead of generalized 3P State, issue some sort of pass/token that only contains the exact information needed to carry the trust attestation from the Trust Provider (Issuer) and can later be redeemed.
- A raw signature allows an Issuer to track the client between issuance and redemption which introduces another cross-site tracking vector.

#### **Token Properties**

- Unforgeable Client can't make more tokens.
- Non-malleable Client can't alter the token.
- Unlinkable Issuer can't correlate an issuance of a token with its redemption.
- Efficient Can be used at scale.
- Verifiable The token can only contain the amount of information allowed by the client.

#### Privacy Pass with VOPRFs

- Unforgeable
- Non-malleable
- Unlinkable
- Efficient
- Verifiable

#### Trustworthy-ish Signal

- Trust Provider 3P State and challenge verification can represent a spectrum of trustworthiness from trustworthy to untrustworthy.
- Allows a Trust Provider to propagate trust/distrust without immediate feedback to the client.
- Prevent reverse engineering of the bot detection algorithms via instant feedback of whether the issuer believes you are trustworthy (if they issued a token).

#### New Token Property

 Private Metadata - A limited amount (1 bit) of information about the issuance that isn't visible to the client, but is provably limited to only the specified amount of informationg-trust-token – IETF 108 – Virtual – 2020-07

#### Attempt 1: Two Keys and a DLEQOR

- PrivacyPass effectively uses a DLEQ proof to prove that a token was signed with a specific key.
- Instead, Issuer uses one of two keys to sign the Privacy Pass token and sends a DLEQOR proof to prove it used one of those two keys.
- Attacks where upon redemption, the validity of the token (whether the issuer accepts the signature) allows you to compare whether two tokens were signed with the same or different keys.

#### Attempt 2: <a href="PMBTokens">PMBTokens</a>

- Issuer Key consists of:
  - KeyA/KeyA Key to sign 'A' or 'B' tokens.
- On issuance, the Issuer signs the token as:



- Sig(T, KeyN) + DLEQOR A signature using either KeyA or KeyB (based on whether the issuer sets the private metadata to be A or B, and a proof showing one of those keys was used.
- On redemption, the Issuer verifies the validity signature first, and if it succeeds, proceeds to use which key the private metadata was signed with to determine the private metadata value.



## Trust Token

#### **Underlying Crypto Protocol**

- PMBTokens Crypto Scheme
- Uses P-384
  - Concerns about application of Cheon/Brown-Gallant attacks (Diffie-Hellman Oracle)
- Multiple Tokens in a batch
- DLEQ(OR) Batching

#### Redemption Records

- Sites with many embedded resources that need some trust attestation:
  - Multiple comment boards
  - Advertisements
  - Social Media buttons
  - Heavy resources
  - 0 ...
- Client redeems a Trust Token and receives a redemption record valid for the current time and top-level website, and can send that redemption record along with all the resource requests.
- Allows downstream consumers of Trust Token without requiring them to have to handle the QPS of redeeming a token against the Trust Provider for every request.

#### Key Management

- Each key that an Issuer uses can divide the anonymity set of Trust Token users.
- Avoid issuers from providing per-user/region keysets.
- Proxied Configuration Fetching
  - Proxy fetches all the issuer key commitments and then sends them to clients.
- Extensions/Alternatives
  - Public append-only log (similar to CT) for key commitments
  - Auditing parties that verify issuers aren't changing their keys too frequently.
  - Key rotation policies/restrictions.

#### Trust Token (△ from Privacy Pass)

- PMBTokens
  - Working with authors to bring crypto primitive to IETF
  - Privacy Pass work to support other underlying crypto primitives.
- Redemption Records
  - Potentially useful for wider Privacy Pass use cases.
- Key Management
  - Depending on the ecosystem, moving to an append-only log/commitment registry.

#### Next Steps

- Privacy Pass IETF Standardization
  - First WG Session: Friday Session III
- Experiments
  - Verify value of Trust Token signal.
  - Verify ergonomics of Trust Token API.
- Trust Token Ecosystem
- Web API W3C Standardization
  - Privacy Pass and/or Trust Token

#### Links

- Privacy Pass (<a href="https://datatracker.ietf.org/wg/privacypass/about/">https://datatracker.ietf.org/wg/privacypass/about/</a>)
- PMBTokens (<a href="https://eprint.iacr.org/2020/072">https://eprint.iacr.org/2020/072</a>)
- Trust Token (<a href="https://github.com/WICG/trust-token-api">https://github.com/WICG/trust-token-api</a>)

### (First Privacy Pass WG Session: Friday Session III)

# Trust Token

IETF 108 – Virtual – 2020-07

(First Privacy Pass WG Session: Friday Session III)

Steven Valdez - svaldez@google.com