P2MP Policy

draft-voyer-pim-sr-p2mp-policy

Authors:

Hooman Bidgoli, Nokia Daniel Voyer, Bell Canada Rishabh Parekh, Cisco Jeffrey Zhang, Juniper

Presenter Hooman Bidgoli

Update/Relevant Drafts

Multiple Vendors are in the mist of implementing this draft.

<u>draft-spring-sr-replication-segment (adopted)</u>

draft-ietf-pim-sr-p2mp-policy (adopted)

draft-hb-spring-sr-p2mp-policy-yang-01 (should we move it to PIM WG?)

<u>draft-Parekh-bess-mvpn-evpn-sr-p2mp-00</u> (Next for adaptation)

draft-hsd-pce-sr-p2mp-policy-01 (Will ask for adaptation call for IETF 109)

draft-hb-idr-sr-p2mp-policy-00 (Will ask for adaptation call for IETF 109 or 110)

draft-hb-pim-p2mp-policy-ping-00 (New)

SR P2MP Policy

- A Point-to-Multipoint (P2MP) Policy connects a Root node to a set of Leaf nodes.
- A P2MP segment contains Replication Segments, each providing forwarding instructions at Root, Transit Nodes and Leaf Nodes.
- It is identified via <ROOT, Tree-ID>
- PCC Initiated: Root and Leaves can be discovered via multicast procedures like NG-MVPN (RFC 6514, 6513) or PIM (Protocol Independent Multicast) on PCC and the relevant information send to the PCE
- PCE Initiated: Root and Leaves can be configure explicitly on the PCE or controller and programmed on the PCC

SR P2MP Policy Details

- A P2MP Policy Contains:
 - One or More Candidate Paths (CP)
 - Only one CP can be active at a time
 - Each CP can setup based a certain TE parameters
- Each CP contain multiple Path Instances
 - Path Instances can be used for global optimization
 - Instances under a tree can be identified via an Instance-ID

Replication Segment

- Is the forwarding instructions for the P2MP LSP
 - Label instructions
 - Next-Hop information
 - Fast Reroute instructions
- A Replication segment is defined via following
 - Root: The root of the P2MP segment that the replication segment is for;
 - Tree-ID: Tree that the replication segment is part of;
 - Node-ID: The node this Replication Segment belongs too.
 - Instance-ID: Unique path-instance ID per <Root, Tree-ID>, it identifies a P2MP LSP.
 - Replication-SID: Segment ID for this Replication Segment.
 - Replication-SIDs can't be stacked as each replication segment can be a egress or transit.
 - There could be exceptions like using a shared replication segment for FRR
- Two Replication Segments can be connected directly via adjacent nodes or they can be non-adjacent and connected via a SID List (Unicast)

Shared Replication Segment

- Shared Replication segment is defined via following
 - Two or more P2MP trees May share a replication segment.
 - A tree has its own replication segment at its root.
 - Replication segment may be identified with Zero ROOT-ID, a unique Replication-ID (for the Tree-ID)
 and the Node-ID
 - As an example it can be used for Facility FRR when the by-pass tunnel is made of only Replication Segments to protect a nexthop. i.e. LFA or TI-LFA is not sued.

SR P2MP Objects

Non-SR-P2MP nodes

SR P2MP YANG Model

```
+--rw p2mp-traffic-engiineering!
   +--rw p2mp-policy* [root-address tree-id]
     +--rw root-address
                            inet:ip-address
     +--rw tree-id
                        uint32
     +--rw p2mp-policy-name? string
     +--rw admin-state?
                            enumeration
     +--ro oper-state?
                           enumeration
     +--rw leaf-list* [leaf-address]
     | +--rw leaf-address inet:ip-address
      +--rw admin-state? enumeration
     +--rw candidate-path* [protocol-id originator discriminator]
       +--rw protocol-id
                              enumeration
       +--rw originator
                             inet:ip-address
       +--rw discriminator
                               uint32
       +--rw candidate-path-name? string
       +--rw admin-state?
                               enumeration
                              enumeration
       +--ro oper-state?
       +--rw preference?
                               uint32
       +--rw constraints* [index]
       l +--rw index
                         uint32
        +--rw attributes? uint32
       +--rw explicit-routing* [index]
         +--rw index
                         uint32
       | +--rw attributes? uint32
       +--rw path-instances* [index]
         +--rw index
                         uint32
         +--rw instance-id?
            -> ../../../replication-segment/replication-id
         +--ro oper-state? enumeration
   +--rw replication-segment* [node-address replication-id]
```

```
+--rw replication-segment* [node-address replication-id]
     +--rw node-address
                            inet:ipv4-address
     +--rw replication-id
                           uint32
     +--rw admin-state?
                            enumeration
     +--ro oper-state?
                          enumeration
     +--rw root-address? inet:ipv4-address
     +--rw tree-id?
                       uint32
     +--rw instance-id? uint32
     +--rw replication-sid? uint32
     +--rw downstream-nodes* [downstream-index]
      +--rw downstream-index
                                    uint32
      +--rw next-hop-address?
                                    inet:ip-address
       +--rw next-hop-interface-name? if:interface-ref
       +--rw protecting-next-hop?
                                     boolean
       +--rw protect-nexthop-id?
                                    uint32
       +--rw (label)?
        +--:(sid-list)
         +--rw sid-list* [index]
           +--rw index
                               uint32
            +--rw sid-segment-type? uint32
        +--:(sr-policy)
         +--rw sr-policy* [replication-sid]
            +--rw replication-sid uint32
           +--rw sr-policy?
                                string
        +--:(rsvp-te)
          +--rw rsvp-te* [replication-sid]
           +--rw replication-sid uint32
           +--rw rsvp-te-tunnel-id? uint32
```


- 1. The primary path (candidate path 1) is A to C to LEAF D and LEAF E with C being a BUD node
- 2. B does not support Replication Segment

• Tree-ID =1 Root = A Instance ID = 1 Inc Rep SID = D Forwarding Info • Next-hop-group-id 0 • Next-hop-add = 127.0.0.1 **Replication Policy E** Tree-ID =1 Root = A Instance ID = 1 Inc Rep SID = E Forwarding Info Next-hop-group-id 0 Next-hop-add = 127.0.0.1

Replication Policy D

Example 2

- Ingress Replication from A to D and A to E
- 2. Root and Leaves need to support Replication Policy.
- 3. B, C, G don't support P2MP Policy and are part of the unicast SR.
- 4. All SR resiliency functionality can be used in unicast SR domain.

Example 3 FRR via Shared Replication Segment

Host

- The primary path is A to C to LEAF D
- 2. Link between C and D is cut, FRR Nexthop Protection via G
- 3. G can use a Shared RS to act as a facility bypass for multiple trees.

No support for replication segment on B

E/

G

Ds=1

4. G Pops bypass label (Implicit Null and forwards D).

D

Replication Policy D Tree-ID = 1 Root = A Instance ID = 1 Inc Rep SID = D Forwarding Info Next-hop-group-id 0 Next-hop-add = na

Example 3 FRR via Shared Replication Segment

Host

- 1. The primary path is A to C to LEAF D
- 2. Link between C and D is cut, FRR Nexthop Protection via G
- 3. G can use a Shared RS to act as a facility bypass for multiple trees.

No support for replication segment on B

E/

D2

D

G

D

Replication Policy D2

- Tree-ID =1
- Root = A
- Instance ID = 1
- Inc Rep SID = D2

Forwarding Info

- Next-hop-group-id 0
 - Next-hop-add = na

Replication Policy D

- Tree-ID =1
- Root = A
- Instance ID = 1
- Inc Rep SID = D

Forwarding Info

- Next-hop-group-id 0
 - Next-hop-add = na

Next Steps

• Looking for adaptation in PIM WG, prior to Spring WG, for obvious reasons.