The GNU Name System
secdispatch – IETF 108

https://datatracker.ietf.org/doc/draft-schanzen-gns/

Martin Schanzenbach
Christian Grothoff
Bernd Fix
30/7/2020
The GNU Name System In a Nutshell
Motivation

- DNS remains a source of traffic amplification DDoS.
- DNS censorship (i.e. by China) causes collateral damage in other countries.
- DNS is part of the mass surveillance apparatus (MCB).
- DNS is abused for offensive cyber war (QUANTUMDNS).
- DoT/DoH, DNSSEC, DPRIVE unfortunately do **NOT** fix this.
What is the GNU Name System?²

- Fully decentralized name system ⇒ Names are not global.
- Supports globally unique and secure identification.
- Features query and response privacy.
- Provides a public key infrastructure
 - Each zone is associated with a cryptographic key pair.
 - Delegation between zones establishes trust relationship.
- Interoperable with DNS.
- Usable.¹

¹User studies conducted in “Decentralized Authentication for Self-Sovereign Identities using Name Systems” (DASEIN) project.
²Joint work with Christian Grothoff and Matthias Wachs
Applications

- Social Networks: SecuShare (https://secushare.org)
- Healthcare and IoT: Accident insurance and private health data.\(^3\)
- Others: Chat, Host addressing, ...

\(^3\) Joint work with University of Applied Sciences Bern, “Decentralized Authentication for Self-Sovereign Identities using Name Systems” (DASEIN)
Technical Overview
- GNS stores records in a **Distributed Hash Table** (DHT).
- DHTs allow us to map keys to values.
- Naive approach: Map domain names to records.
 e.g.: example.com ⇒ A: 1.2.3.4
Secure Storage / Retrieval

- **Query privacy**
 - GNS implements a *Private Information Retrieval* (PIR) scheme:
 - “a protocol that allows a user to retrieve an item from a server in possession of a database without revealing which item is retrieved.”
 - Queries do not reveal domain name.

- **Record confidentiality**: Values in DHT are signed and encrypted by zone owner.
- **Zone privacy**: Zones cannot be enumerated.
- **Censorship and DDoS resistance**: Decentralized, resilient directory.

Zone Delegation

• The “NS” equivalent in GNS is called “PKEY”.
• A “PKEY” record contains public zone keys.
• The combination of a “PKEY” record value and a name allows users to query records in a delegated zone.
```
\[ \text{`.com` zone: } 5G0Z \]

```

Bob's zone: 7F5T

```

```{fig}
PUT \textit{bob} in 5G0Z

- \textbf{Label}: bob
- \textbf{Type}: PKEY
- \textbf{Value}: 7F5T

PUT \textit{www} in 7F5T

- \textbf{Label}: www
- \textbf{Type}: A
- \textbf{Value}: 1.2.3.4

www.bob.com = 1.2.3.4
```
GET *bob* in 5G0Z

<table>
<thead>
<tr>
<th>Label</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bob</td>
<td>PKEY</td>
<td>7F5T</td>
</tr>
</tbody>
</table>

www.bob.com?
GET www in 7F5T

<table>
<thead>
<tr>
<th>Label</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>www</td>
<td>A</td>
<td>1.2.3.4</td>
</tr>
</tbody>
</table>
Why are we here?
Discussions at IETF/W3C/ICANN

  - Failed attempt to special-use '.gnu' for GNS.
  - Resulting in RFC7686, RFC8244

- STRINT 2014 (W3C/IAB workshop):

- IETF 104 IRTF DINRG WG: https://datatracker.ietf.org/doc/slides-104-dinrg-gnu-name-system/

Current Status

• Who is (and will be) working on it:
  • GNUnet project.
  • Current funding for specification by NLnet: https://nlnet.nl/project/GNS/.

• Implementation
  • Reference implementation in C part of GNUnet:
    https://git.gnunet.org/gnunet.git/tree/src/gns
  • Second implementation in Go:
    https://github.com/bfix/gnunet-go/tree/master/src/gnunet/service/gns

• Specification
  • Current draft: draft-schanzen-gns-01.
  • Status: Documents current implementation. Collecting feedback to improve protocol (and spec).
Next steps

• Address received feedback:
  • Better trust agility to address questions on choice of Hierarchical Deterministic Key Derivation (HKDF). No "standard" go-to HKDF exists at this time:
    • In draft and implemented: ECDSA (RFC6979) over Curve25519 (RFC8031).
    • Alternatives: Schnorr/Ed25519-based ("Tor-style").
  • Update to symmetric encryption scheme for IND-CCA.
  • Address other feedback.

• Desired next steps at IETF:
  • Receive feedback from IETF experts on protocol and document.
  • Is this document interesting to any existing IETF/IRTF WG? Should/can a new WG be formed?

---

5BIP32-Ed25519 has issues:
https://forum.web3.foundation/t/key-recovery-attack-on-bip32-ed25519/44
The GNU Name System

https://gnunet.org

schanzen@gnunet.org
3D11 063C 10F9 8D14 BD24 D147 0B09 98EF 86F5 9B6A


How do we bootstrap the top-level zones?
GET bob in 5G0Z

<table>
<thead>
<tr>
<th>Label</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bob</td>
<td>PKEY</td>
<td>7F5T</td>
</tr>
</tbody>
</table>
"Hyper-hyper local root" concept:

- Resolver ships with initial root zone configuration.
- Root zone configurable *locally* at *each* endpoint.
- User override/extension of root at top-level or subdomain-level for:
  - Circumvent censorship if necessary.
  - Private networks.
Envisioned Governance Model

- Non-profit organization.
- Multi-stakeholder model: Board, supporting organizations, ...
- Examples for possible stakeholders:
  - Software and OS Distributors
  - Browser vendors
  - Governments
- Funding options:
  - Applications for new top-level domains.
  - Registrations of new top-level domains.
  - ...