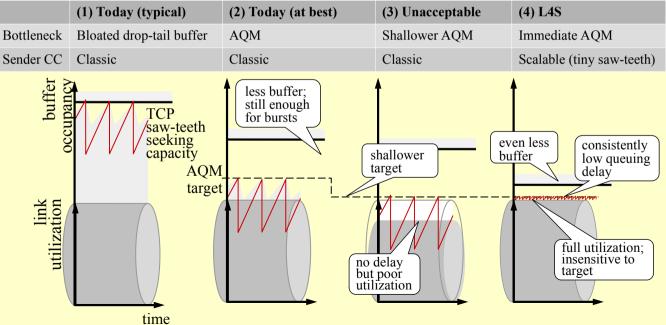
Low Latency Low Loss Scalable Throughput (L4S)

draft-ietf-tsvwg-l4s-arch-06 draft-ietf-tsvwg-ecn-l4s-id-10 draft-ietf-tsvwg-aqm-dualq-coupled-12


Bob Briscoe, Independent<ietf@bobbriscoe.net>Koen De Schepper, NOKIA Bell Labs<koen.de_schepper@nokia.com>Olivier Tilmans,NOKIA Bell Labs<olivier.tilmans@nokia-bell-labs.com>Greg White,CableLabs*<g.white@CableLabs.com>Asad Sajjad Ahmed, Independent<me@asadsa.com><ing@albisser.org>Olga Albisser, Simula Research<olga@albisser.org>

TSVWG, IETF-108, Jul 2020

Recap – L4S Motivation

- Ultra-low queuing delay for *all* Internet applications
 - including capacity-seeking (TCP-like) and capacity-adaptive

The trick: scalable congestion control

L4S Implementation News

- Broadcom BCM88800 integrated packet processor & traffic manager
 - released 7th gen of Broadcom's StrataDNX™ switching product Line
 - with L4S DualQ Coupled AQM (Curvy RED) support
- Low Latency DOCSIS
 - Interop testing of 3 independent implementations (2 cable modems, 1 CMTS)
 - Not completely passing all functional tests yet (one implementation is)
- Data Plane Development Kit (DPDK)
 - Open source libraries to accelerate packet processing on a variety of CPU architectures
 - DualQ Coupled AQM implementation planned
- ns3 see next 2 slides (courtesy of Tom Henderson)

L4S in ns3: status update

- ns-3 TCP Prague implementation now contains:
 - Linux-like pacing
 - paced chirping or Reno flow start
 - RTT independence support
- 3 summer students working on L4S-related native ns-3 models, specifically:
 - TCP Prague (above items, plus AccECN and validation & alignment with Linux ref implementation)
 - L4S-aware FQ/CoDel (completed)
 - FQ/Cobalt with L4S, with which existing ack filtering will be integrated
 - generation of Flent-compatible experiment traces to mirror the experiments written by Pete Heist

IETF-108 Hackathon report back

- ns3 work
 - students worked on the above (RTT independence, FQ/Cobalt, Flent)
 - Tom Henderson worked on integrating and testing the combined code
 - On track to include most of these components and the dual queue coupled AQM model for ns-3.32 release (Sep'20)
- Ashutosh Srivastava and Fraida Fund (NYU)
 - documentation and scripts on how to experiment with L4S in CloudLab,
 - including reproducing most of the Pete Heist scenarios, and posted on GitHub

see https://www.nsnam.org/wiki/Sprints#IETF_108_Hackathon.2C_July_20-23.2C_2020

L4S Drafts - Status

- draft-ietf-tsvwg-l4s-arch-06:
 - complete AFAICT,
 - except for FQ_CoDel with L4S support it currently only cites the code would be great if someone would write a brief update to the FQ_CoDel draft
- draft-ietf-tsvwg-aqm-dualq-coupled-12:
 - edits to Curvy RED appendix, from Broadcom experience (see earlier).
- draft-ietf-tsvwg-ecn-l4s-id-10:
 - ToDo: summarize Jake's proposed approach as a new subsection of Appendix B
 - Discuss SHOULDs vs MUSTs in Prague L4S requirements (see next slide)

Prague L4S Requirements – Changes?

- Remain responsive at low RTT (i.e. remove window \geq 2 constraint):
 - MUST \rightarrow SHOULD (MAY?), because it's a tradeoff:
 - no min window keeps queue delay low
 - min window protects against unresponsive flows

• Fall-back on Classic ECN AQM detection: How about?:

- For the L4S experiment, implementations MUST be capable of:
 - monitoring for a Classic ECN AQM and logging results
 - falling back to Reno-Friendly if detected

each being possible to enable independently

- Discuss
- known issue: need to wordsmith to allow for out-of-band monitoring instead

Relaunched invitation to get involved

- Encourage more implementations, testing, repeatability
- Discussion fora:
 - tcpPrague@ietf.org L4S CC & transports (not just TCP)
 - Github.com/L4STeam code-specific issues
 - tsvwg@ietf.org and transport-specific lists (tcpm, quic, etc.) for standardization discussion
 - iccrg@irtf.org CC (pre-)standardization discussion