PFC-Free Low Delay Control Protocol (LDCP)

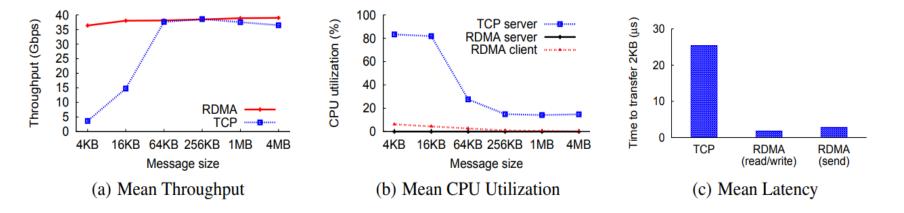
draft-dai-tsvwg-PFC-free-low-delay-control-protocol-00

Huichen Dai, Binzhang Fu, Kun Tan

daihuichen@huawei.com

IETF 108, TSVWG, July 28, 2020

LDCP in Huawei Cloud


- LDCP has been online with RoCEv2 in Huawei Public Cloud, safely running for one year
- Supports Huawei EVS (block storage service) with less than 100us application-level RTT

- Motivation
- LDCP (Low Delay Control Protocol)
- Use Cases
- Conclusion

- Motivation
- LDCP (Low Delay Control Protocol)
- Use Cases
- Conclusion

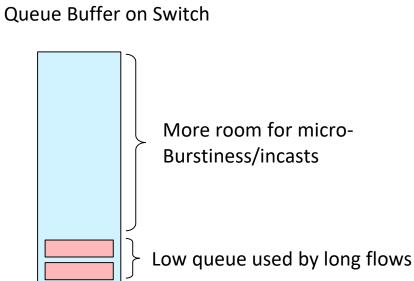
Data center networks (DCN)

- Cloud scale services: IaaS, PaaS, Search, BigData, Storage, Machine Learning, Deep Learning
- Services are latency sensitive or bandwidth hungry or both
- Solution: RDMA (Remote Direct Memory Access)
 - RDMA bypasses host OS stack \rightarrow frees host CPU, lowers latency

RDMA outperforms TCP in throughput, CPU utilization and latency

RDMA in Modern Datacenters

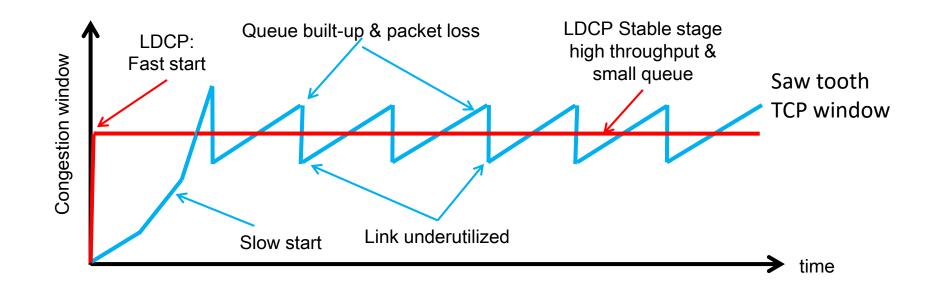
- In past, RDMA was deployed on special fabrics, i.e., InfiniBand
 - InfiniBand is incompatible with Ethernet + IP, also expensive
 - How to deploy RDMA in data-centers?
- Solution: RoCEv2 (RDMA over Converged Ethernet)
 - A technique that runs RDMA over Ethernet

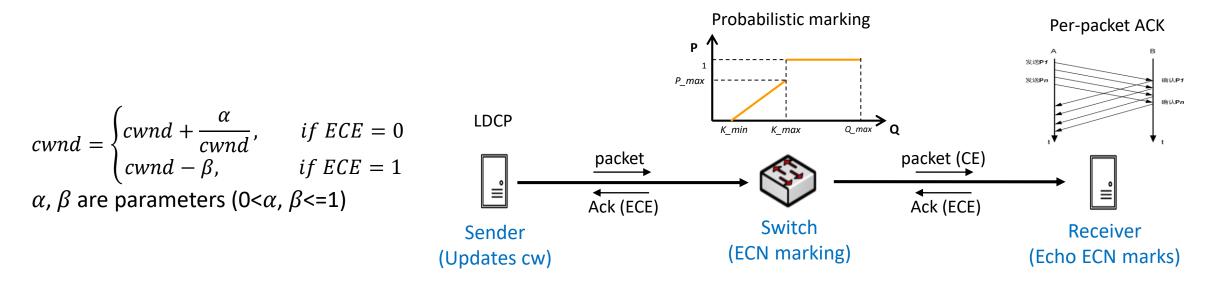

RoCEv2 Problems

- RoCEv2 performance is sensitive to packet drops
 - Go-back-N: retransmit the lost packet and all subsequent ones
- RoCEv2 uses an *Ethernet extension* "FPC" to achieve losslessness
- PFC signals upstream switch to stop sending when queues build up
- However, PFC brings adverse effects: performance degradation (HoL blocking) and unreliability (e.g., deadlock)
 - significantly harms latency and throughput performance
 - limit RoCEv2 deployment to only one pod in data-centers (limit the scale of adverse effects)

- Motivation
- LDCP (Low Delay Control Protocol)
- Evaluation Results
- Conclusion

LDCP (Low Delay Control Protocol)


- An end-to-end congestion control that maintains constant low queues
 - Queue usage is much smaller than available buffer size, leading to *almost no packet loss*, thus
 - PFC-free
 - No throughput degradation


 Small queue size reduces queueing delay and packet loss, so LDCP is not specific to RoCEv2, but is open to all transports with a reliable service

LDCP (Low Delay Control Protocol)

- LDCP consists of two algorithms
 - Fast start algorithm quickly acquires bandwidth in first RTT
 - Stable stage algorithm maintains constant low queue and high throughput

- Window based congestion control
- Switch: standard ECN
- Per-packet ACK: receiver generates an ACK for each received data packet (not mandatory)
- Sender adjusts window on ACK arrival

• Fluid Model

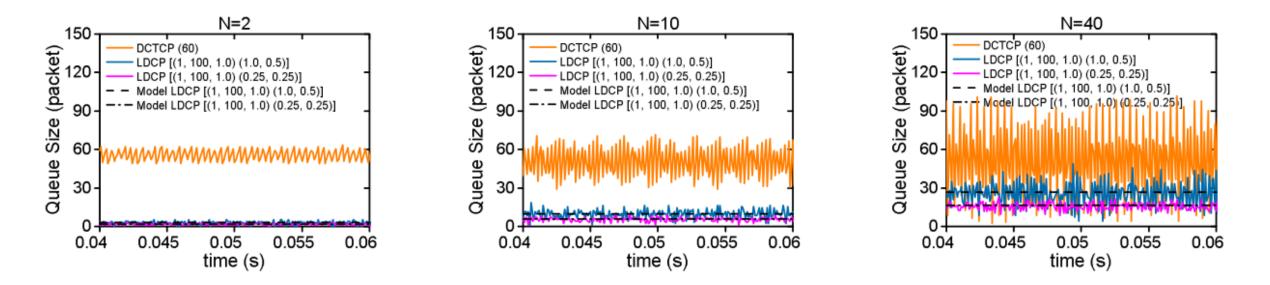
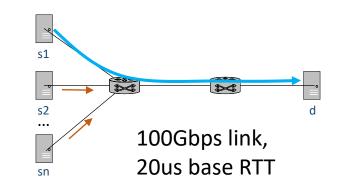

$$\frac{\mathrm{d}W}{\mathrm{d}t} = (1 - p(t - R))\frac{\alpha}{R(t)} - p(t - R)\frac{\beta W(t)}{R(t)},$$
$$\frac{\mathrm{d}q}{\mathrm{d}t} = N\frac{W(t)}{R(t)} - C.$$
$$R(t) = d + \frac{q(t)}{C}.$$

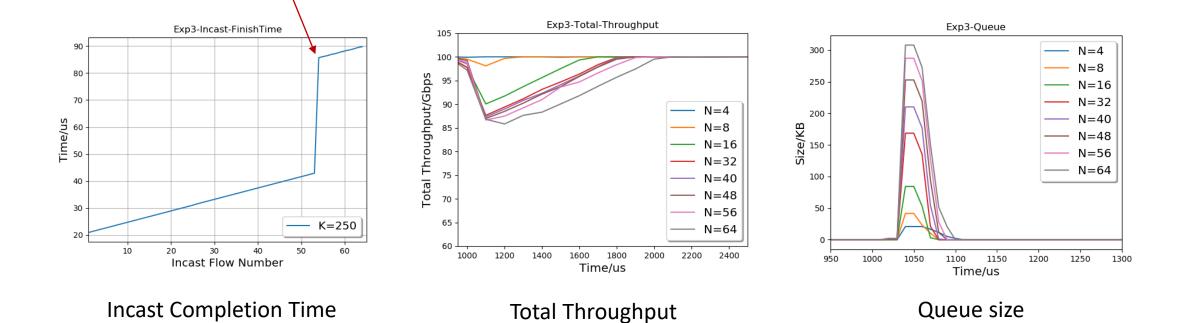
Table 1: Model Parameters

W(t)	window size (cw) of a flow at time t
q(t)	instant queue size at time t
p(t)	ECN marking probability at time t
d	round trip propagation delay
R(t)	RTT at time <i>t</i>
N	number of flows on the bottleneck link
С	link capacity
K_{min}	ECN marking threshold lower bound
K _{max}	ECN marking threshold upper bound
P_{max}	largest ECN marking probability

- The model reveals that LDCP is able to maintain a stable queue size.
 - Model predictions accurately match the real queue size

- s1 s2 100Gbps link, sn 20us base RTT dn
- Simulation and results: stable and small queue size


LDCP – fast start algorithm


- Choosing an appropriate initial window (IW) size is challenging when a new flow starts up
 - a too large IW may cause congestion inside network → large queue buildup or even packet drops
 - a too conservative IW may miss the transmission opportunities in the first RTT
 → longer completion time for small messages
- LDCP fast start algorithm: makes the most of the free bandwidth, but without causing congestion

LDCP – fast start algorithm

• Incast + long flow share bottleneck link

WRED drop begins to happen

*Queue limit: 500KB, no timeout until 245 incast senders, 5KB each sender

- Motivation
- LDCP (Low Delay Control Protocol)
- Use Cases
- Conclusion

LDCP with RoCEv2

- Revisions to RoCEv2 standard
 - Add ACK packets for RDMA read responses
 - Add customized headers for sequence numbers, ECN signals, ect.
- RoCEv2 with LDCP outperforms RoCEv2 with DCQCN
 - 32-node testbed, 2-layer Clos topology
 - 1:1 bandwidth subscription: small-msg average FCT reduced by: 28.0%, 48.2%, 34.9%, 59.9% (4 kinds of workloads)
 - 4:1 bandwidth over-subscription: small-msg average FCT reduced by: 35.2%, 30.3%, 29.8%, 50.8% (4 kinds of workloads)

On-going cases

• LDCP with standard RoCEv2

• LDCP with TCP offload Engine (ToE)

- Motivation
- LDCP (Low Delay Control Protocol)
- Testbed Results
- Conclusion

Conclusion

- LDCP: an end-to-end congestion control protocol, consists of
 - Fast start algorithm
 - Stable stage algorithm
 - Maintains stable and small queue size
- Achieves very small packet loss rate, allows loss-sensitive transports to operate without link-level flow control
 - Also with performance improvement: low latency, high throughput
- Safely running for one year in production environments with RoCEv2

Thanks :-)

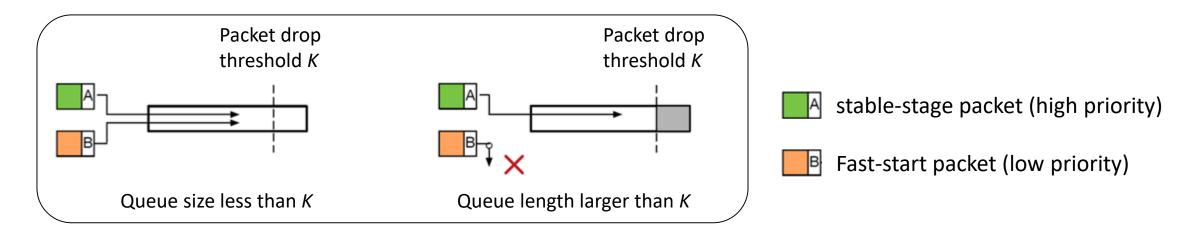
Comments are welcome~

• Comparison with existing ECN congestion control

ECN Marks	ТСР	DCTCP	LDCP
1011110111	Cut window by <mark>50%</mark>	Cut window by <mark>40%</mark>	-++
000000001	Cut window by <mark>50%</mark>	Cut window by 5%	++++++++-

• Window update rule (Per-packet ACK)

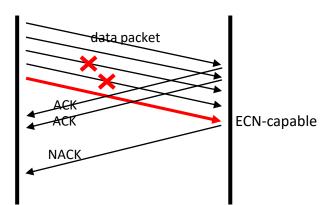
$$cwnd = \begin{cases} cwnd + \frac{\alpha}{cwnd}, & if \ ECE = 0\\ cwnd - \beta, & if \ ECE = 1 \end{cases}$$


 α , β are parameters (0< α , β <=1)

$$cwnd = \begin{cases} cwnd + \frac{n\alpha}{cwnd}, & if \ ECE = 0\\ cwnd - n\beta, & if \ ECE = 1 \end{cases}$$

$$\alpha, \beta \text{ are parameters } (0 < \alpha, \beta < = 1)$$

- AI-MD algorithm distributed to each ACK
 - $+\frac{\alpha}{cwnd}$: AI factor, increases cwnd by α in one RTT
 - $-\beta$: MD factor, decreases cwnd by $\beta * cwnd$ each RTT


LDCP – fast start algorithm

- Select a large value for IW, e.g., BDP, to probe the network
- Fast-start packets have low priority
 - pass the network if there is enough free bandwidth, but get dropped intentionally by switches if there is congestion
 - Set up a queue size threshold *K*, low priority packets are dropped if queue size exceeds *K*, high priority packets are forwarded normally

LDCP – fast start algorithm

- Mark packets and drop packets in the same queue?
- ECN/WRED supports this feature
 - ECN-capable packets are subject to ECN marking
 - ECN-incapable packets comply with WERD dropping
- Fast-start packets are set to ECN-incapable, stable-stage packets are set to ECN-capable
- But if all packets of a message are dropped by WRED, timeout happens
 - Make the last fast-start packet ECN-capable

