Taxonomy for P2P Group Management Solutions

draft-kassinen-p2psip-group-taxonomy-00

Otso Kassinen
Timo Koskela
Erkki Harjula
Mika Ylianttila (presenter)

77th IETF Meeting
Based on a literature review of more than 50 publications about P2P group management solutions,

- Taxonomy includes 6 examples representing the versatility of proposed solutions
 - Solution 1: "HIERAS: A DHT Based Hierarchical P2P Routing Algorithm"
 - Solution 2: "Trust-Based Community Formation in Peer-to-Peer File Sharing Networks"
 - Solution 3: "Service-Driven Group Management for Mobile P2P Services"
 - Solution 4: "A Utility-Aware Middleware Architecture for Decentralized Group Communication Applications"
 - Solution 5: "PP-COSE: A P2P Community Search Scheme"
 - Solution 6: "An Interest Group Model for Content Location in Peer-to-Peer Systems"
draft-p2p*-group-taxonomy

• Four High-Level Properties
 • Motivation: The reason why groups are formed.
 • Criteria: The criteria that are used for selecting nodes to a specific group.
 • Methods: The algorithms or other methods for observing and evaluating the criteria, leading to the selection of nodes to a specific group.
 • Realization: The kind of underlying P2P network that is used as a basis for the solution and enables the running of the specified methods.

• Various categories under these four properties
draft-p2p*-group-taxonomy

• Categories of Motivation
 • Search Efficiency: The efficiency of routing in the P2P network or (a more specific case) the efficiency of resource searching.
 • Group Communication: The ability to communicate in a suitable group (of human users).
 • Service Provisioning: Publishing and discovery of services on top of a P2P system.
 • Knowledge Sharing and Collaboration: The ability to share important information and collaborate in the context of specific tasks, often in a professional setting.
 • Trust, Security and Privacy Management: Enhance the trust, security, and/or privacy in P2P operations.
Categories of Criteria

- **Common Interests**: The members (humans) of a community share some common interests, related to e.g. content.
- **Node Capability**: The terminal devices' capabilities such as CPU power or memory.
- **Level of Trust**: How strong is the trust between the users (or nodes).
- **Social and Organizational Memberships**: Membership in a social group or organization.
- **Locality**:
 - **Physical**: How near the nodes are to each other, in terms of network latency or other physical network-related metric.
 - **Logical**: How near the nodes are to each other, in terms of hop-count or other logical network-related metric.
 - **Geographical**: How near the nodes are to each other, in terms of geographical distance.
Categories of Realization

- **Single Overlay**: The group or groups are created within a single overlay; the entire system contains only one overlay network.
 - **Structured (DHT)**: The organization and operation of the overlay is based on mathematical rules, usually on Distributed Hash Tables (DHT).
 - **Unstructured**: The organization and operation of the overlay is based on some "less exact" rules.
 - Pure: The system is completely flat (example: Gnutella 0.4), and each node has equal responsibilities.
 - Hierarchical: There is some structuring, such as edge-peer vs. super-peer distinction (example: JXTA).

- **Multi-overlay**: The group or groups are created using multiple overlays; the entire system contains multiple overlay networks that can be either structured, unstructured, or both. Multi-overlay-based solutions can be further classified to:
 - **Vertical**: A vertical system is usually described as a tree, where every layer or leaf is an independent DHT overlay network
 - **Horizontal**: All the leaf overlays are connected to a single common DHT overlay that is responsible for optimizing the routing in the whole network
draft-p2p*-group-taxonomy

• Using the Taxonomy for the Classification, example

• Solution 1 has these properties
 • Motivation: Search Efficiency
 • Criteria: Locality
 • Methods: Analysis of Node and Network Performance
 • Realization: Multi-overlay, DHT

• Etc.!
draft-p2p*-group-taxonomy

• Next steps
 • Feedback for the scope and extent
 • is it overblown, should it be simplified?
 • for example, less example solutions?
 • less categories?
 • are the naming conventions clear enough?
 • Discussion on the draft on the mailing list
 • need of this type of taxonomy as Informational RFC?
 • need to update solution/taxonomy space as other solutions emerge?
 • need for some feasibility/performance evaluation?
draft-p2p*-group-taxonomy

• Thank you!

• Contact and more info:
 • otso.kassinen, timo.koskela, erkki.harjula, mika.ylianttila, at ee.oulu.fi
 • MediaTeam Oulu Research Group, University of Oulu, Finland