Proceedings of the Eleventh
Internet Engineering Task Force
October 17-19, 1988 in Ann Arbor, MI

Compiled by
Phil Gross
Karen Bowers

January 1989

Corporation for National Research Initiatives
1895 Preston White Drive
Suite 100
Reston, VA 22091
Acknowledgements

The 17-19 October 1988, IETF meeting was hosted at the University of Michigan in Ann Arbor by Elise Gerich and Hans-Werner Braun of Merit, Inc. I wish to express very sincere appreciation to Elise Gerich (Merit), who handled all local arrangements. Her efficient planning beforehand and tireless help during the meeting made the meeting a pleasure to chair. She also held an informative and entertaining tour of the NSFnet Operations Center.

I'd also like to thank Gladys Reichlen and Allison Mankin of MITRE, who helped plan and run the meeting from the MITRE end.
Table of Contents

1. Chairman's Message
2. Overview and Status of IETF Working Groups
3. IETF Attendees
4. Final Agenda
5. Working Group Reports/Slides
 Ann Arbor, MI
 17-19 October 1988
6. Network Status Briefings and Technical Presentations
 . NSFnet Report - Part I (Hans-Werner Braun)
 . NSFnet Report - Part II (J.E. Drescher)
 . ARPANET/DDN Report (Marianne Lepp)
 . DDN Report: Transition of DDN Mailbridges from LSI-11 to Butterfly Gateways (Michael Brescia)
 . INTEROP 88 Network Report (Philip Almquist)
 . Internet Protocols for Amateur Radio (Phil Karn)
 . High Performance TCP Over an Ethernet (Van Jacobson)
 . Congestion Control Observations Using NETMAN (Allison Mankin)
 . What Is USENET? What Is NNTP? (Gene Spafford)
 . The NIC Domain Chart (Mark Lottor)
 . On Some T1 Satellite Link Performance (John Lekashman)
7. Additional Working Group Updates
 . Interconnectivity (Guy Almes)
 NASA Ames Meeting
 27 September 1988
 . PDN Routing (Carl-H. Rokitansky)
 USNA, Annapolis Meeting
 15-17 June 1988
8. Papers Distributed at IETF
 . NSFnet Connectivity and Configuration (Susan Hares)
 . Management and Operation of the NSFnet Backbone Network Project (MERIT)
 . California Internet Federation
1. CHAIRMAN'S MESSAGE

PHILL GROSS
NRI
The IETF is growing. There are currently 16 active Working Groups in the IETF and the quarterly meetings are typically attended by 100-150 people. Chairing a group of this size, with this level of activity, is no longer a simple matter. The administrative details and logistics involved in planning meetings and producing the Proceedings had begun to detract from the more important mission of identifying key Internet problem areas and then organizing Working Groups to solve them.

I am pleased that, beginning with the January 18-20 IETF meeting, Karen Bowers (NRI, Senior Systems Analyst) will be working with me on many of these IETF matters. Karen will take almost complete responsibility for the Proceedings and many of the meeting planning activities. As a result, by next month we should be able to announce the dates and locations of the next 5 IETF meetings. She will also be working closely with me to facilitate the progress of the WGs. For example, we are considering a quarterly IETF electronic newsletter to announce WG meetings, documents, and status. This should help all those interested in IETF activities to be more aware of the activities of the various WGs. It may also help WGs maintain momentum between IETF plenary meetings.

A condensed status of the currently active IETF Working Groups is provided in the attached chart. Chapter 2 expands this information with an overview of each working group and a summary of progress to date.

For more detailed information (e.g., to obtain a description of the WGs; to obtain copies of the draft documents or WG reports; or to obtain information on meeting dates and locations), contact either the Chairs/Points-of-Contact directly (listed below) or send a request to bowers@sccgate.scc.com. We are now in the process of updating and reorganizing the IETF directory at SRI-NIC to make all this information more easily accessible online.

Phill Gross
(interim address: gross@sccgate.scc.com)
Corporation for National Research Initiatives (NRI)
1895 Preston White Drive, Suite 100
Reston, VA 22091
703-620-8990
Summary of IETF Working Group Status

(January 1989)

<table>
<thead>
<tr>
<th>Working Groups</th>
<th>RFC or Draft?</th>
<th>Oct 88?</th>
<th>MET Report?</th>
<th>JAN 89?</th>
<th>Chair or POC (address)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>JEFF SCHILLER (MIT)</td>
</tr>
<tr>
<td>CMIP-over-TCP (CMOT)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>JIS@ATHENA.MIT.EDU</td>
</tr>
<tr>
<td>Host Requirements</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>LEE LABARRE (MITRE)</td>
</tr>
<tr>
<td>Interconnectivity</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>CEL@MITRE-BEDFORD.ARPA</td>
</tr>
<tr>
<td>Internet MIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>BRADEN@ISI.EDU</td>
</tr>
<tr>
<td>NSFnet/Reg Monitoring</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>GUY ALMES (RICE)</td>
</tr>
<tr>
<td>Open SPF-Based IGP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>ALMES@RICE.EDU</td>
</tr>
<tr>
<td>Open Systems Routing</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>CRAIG PARTRIDGE (BBN)</td>
</tr>
<tr>
<td>OSI Interoperability</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>SKH@MERIT.EDU</td>
</tr>
<tr>
<td>PDN Routing Group</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>MIKE PETRY (UMD)</td>
</tr>
<tr>
<td>Performance and CC</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NETRY@TRANTOR.UMD.EDU</td>
</tr>
<tr>
<td>Pt-Pt Protocol</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>MARIANNE LEPP (BBN)</td>
</tr>
<tr>
<td>ST and CO-IP</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>MLEPP@BN.COM</td>
</tr>
<tr>
<td>TELNET LineMode</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Ross Callon (DEC)</td>
</tr>
<tr>
<td>User Services (New)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Yes</td>
<td>CALLON@ERLANG.DEC.COM</td>
</tr>
</tbody>
</table>

JEFF SCHILLER (MIT) JIS@ATHENA.MIT.EDU
LEE LABARRE (MITRE) CEL@MITRE-BEDFORD.ARPA
BRADEN@ISI.EDU GUY ALMES (RICE)
ALMES@RICE.EDU CRAIG PARTRIDGE (BBN)
SKH@MERIT.EDU MIKE PETRY (UMD)
PETRY@TRANTOR.UMD.EDU MARIANNE LEPP (BBN)
MLEPP@BN.COM ROSS CALLON (DEC)
CALLON@ERLANG.DEC.COM C-H ROKITANSKY
ROKI@ISI.EDU ALLISON MANKIN (MITRE)
MANKIN@GATEWAY.MITRE.ORG DREW PERKINS (CMU)
DDP@ANDREW.CMU.EDU CLAUDIO TOPOLCIC (BBN)
TOPOLCIC@BBN.COM DAVE BORMAN (CRAY)
DAB@CRAY.COM KAREN BOWERS (NRI)
BOWERS@SCCGATE.SCC.COM
2. OVERVIEW AND STATUS OF IETF WORKING GROUPS
OVERVIEW AND STATUS OF IETF WORKING GROUPS

This section provides the following basic information for all currently active IETF Working Groups (listed below):

1) Statement of charter and goals
2) Progress to date
3) Estimate of timeframe for completion
4) Dates of last and next meeting
5) Name of WG mailing lists
6) Names of key players

<table>
<thead>
<tr>
<th>Working Groups</th>
<th>Chair or Reporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>Jeff Schiller (MIT) jis@athena.mit.edu</td>
</tr>
<tr>
<td>CMIP-over-TCP (CMOT)</td>
<td>Lee LaBarre (MITRE) cel@mitre-bedford.arpa</td>
</tr>
<tr>
<td>Host Requirements</td>
<td>Bob Braden (ISI) braden@isi.edu</td>
</tr>
<tr>
<td>Interconnectivity</td>
<td>Guy Almes (Rice) almes@rice.edu</td>
</tr>
<tr>
<td>Internet MIB</td>
<td>Craig Partridge (BBN) craig@nnsb.nsf.net</td>
</tr>
<tr>
<td>NSFnet/Reg Monitoring</td>
<td>Susan Hares (Merit) skh@merit.edu</td>
</tr>
<tr>
<td>Open SPF-based IGP</td>
<td>Mike Petry (UMD) petry@trantor.umd.edu</td>
</tr>
<tr>
<td>Open Systems Routing</td>
<td>Marianne Lepp (BBN) mlepp@bbn.com</td>
</tr>
<tr>
<td>OSI Interoperability</td>
<td>Ross Callon (DEC) callon@erlang.dec.com</td>
</tr>
<tr>
<td>PDN Routing Group</td>
<td>C-H Rokitansky roki@isi.edu</td>
</tr>
<tr>
<td>Performance and CC</td>
<td>Allison Mankin (MITRE) mankin@gateway.mitre.org</td>
</tr>
<tr>
<td>Pt-Pt Protocol</td>
<td>Drew Perkins (CMU) ddp@andrew.cmu.edu</td>
</tr>
<tr>
<td>ST and CO-IP</td>
<td>Claudio Topolcic (BBN) topolcic@bbn.com</td>
</tr>
<tr>
<td>TELNET Linemode</td>
<td>Dave Borman (Cray) dab@cray.com</td>
</tr>
<tr>
<td>User Services (New)</td>
<td>Karen Bowers (NRI) bowers@scctgate.scc.com</td>
</tr>
</tbody>
</table>
AWG

Authentication Working Group

Jeff Schiller (MIT)
jis@athena.mit.edu

1) Brief statement of charter and goals

There are currently four main deliverables:

A) RFC specifying an authentication format which supports multiple authentication systems. [This document may wind up being specific to SNMP per discussions at the last working group meeting].

B) Document discussing the cost/benefit tradeoffs of various generic approaches to solving the authentication problem in the Internet context.

C) Document to act as a protocol designers guide to authentication.

D) RFC proposing A Key Distribution System (emphasis on "A" as opposed to "THE"). MIT's Kerberos seems the most likely candidate here.

2) Progress to date

As of this time there is an IDEA paper that is a description of the kerberos protocol. Jennifer Steiner at MIT is currently working on an RFC format document to submit that will describe the kerberos protocol in detail sufficient to code to.

3) Estimate of timeframe for completion

Hard to state clearly as the charter of the group (not to mention the membership) is still subject to change. However I would expect that the Kerberos RFC should be in draft format if not by January 17th, then before the IETF meeting following. We would like to also have a document defining authentication extensions to SNMP in draft format before the IETF meeting following the January meeting.

4) Dates of last and next meeting

Last Meeting: IETF meeting at Merit
Next Meeting: April 1989 IETF meeting (tentative)

5) Name of WG mailing lists

awg@bitsy.mit.edu

6) Names of key players

Jon Rochlis, Jeff Schiller and Jennifer Steiner
CMIP-over-TCP (CMOT) Working Group

Lee LaBarre (MITRE)
labarre@gateway.mitre.org

1) Charter: As described in RFC1052
 a) Develop a long term approach to management of the Internet based on the OSI Network Management Framework and the Common Management Information Protocol (CMIP).
 b) Provide input to the OSI standards process based on experience in the Internet, and thereby influence the final form of OSI International Standards on network management, in particular CMIS/P.

 Approach
 a) Develop prototype implementors agreements on CMIP over TCP.
 b) Develop prototype implementations based on the CMOT agreements and IETF SMI and MIB agreements.
 c) Experiment with CMOT and extensions to the SMI and MIB.
 d) Develop final implementors agreements for CMOT.
 e) Promote development of products based on CMOT.
 f) provide input to the OSI Network Management standards process in time to effect the International Standards.

2) Expected duration of group:
 The groups work should be completed by June 1989.

3) List of Members:
 Member corporations are listed here.
 Advanced Computing Environments
 Convergent Technologies
 Epilogue Technology Corp.
 Hewlett Packard Corp.
 SUN Microsystems
 3COM Corp.
 Unisys Corp.
 Communications Machinery Corp.
 Digital Equipment Corp.
 Excelan
 MITRE Corp.
 Sytek
 Ungermann-Bass
 The Wollongong Group
4) Mailing List:
 netman@gateway.mitre.org

5) Last meeting:
 December 1988, Santa Clara, CA

7) Achieved goals: from (1)
 a) Overview document (IDEA0012)
 Thin Presentation layer (IDEA0017)
 Prototype Implementors Agreements (IDEA0025)

 b) Nine vendor prototype implementations demonstrated at
 INTEROP 88 in Santa Clara, CA.

 c) Experimentation occurred during development of the INTEROP
 demo, and is continuing.

 d) Draft implementors agreements are written for the DIS CMIP
 over TCP. Proposals for extending the SMI and MIB are in
 progress.

 e) Thirteen corporations participated in the INTEROP 88 demo.
 Nearly all the vendors in that group have indicated that
 they expect to field products during 1989 based on CMOT
 implementors agreements.

 f) Several Working Group members are participating in the OSI
 network management standards organizations and carrying the
 CMOT experience into that forum.
HOST REQUIREMENTS WORKING GROUP

Bob Braden (ISI)
braden@isi.edu

CHARTER AND GOALS:

The primary task of the Host Requirements Working Group (HRWG) is to prepare an RFC entitled "Requirements for Internet Hosts". This RFC will contain a comprehensive specification of the networking software requirements for an Internet host, to complement the Gateway Requirements RFC-1009.

As a secondary task, the WG has provided a forum for discussing particular solutions to pressing host problems, and has resulted in several RFC's by WG members.

The Host Requirements RFC covers the following topics:

- Link Layer (only amendments to RFC-1009 discussion)
- IP Layer (IP and ICMP)
- Transport Layer (TCP and UDP)
- Application Layer (SMTP, FTP, TFTP, and Telnet)
- Support Programs (DNS, Booting, Network Management)

For each protocol, it amends and expands on the specification RFC(s). In those areas in which the referenced specifications contain ambiguous or incomplete information, the RFC contains further clarification, discussion, and guidance. The intent is to define the current architecture as completely and carefully as possible, not to invent new architecture.

PROGRESS TO DATE:

The draft document is nearly complete, after 5 meetings in 10 months. The 6th and last meeting is scheduled for the Austin IETF meeting in January 1989. The draft is now 175 pages.

ESTIMATE OF PUBLICATION DATE:

February 1, 1989.

MEETING DATES:

Next: Jan. 18-19, 1989 at Austin IETF meeting.
MAILING LIST:

To FTP the document, do anonymous FTP to host venera.isi.edu and fetch pathname:

 pub/ietf-hosts.rfc.txt

This file is ~400KB. Change bars (and other symbols) mark all the content changes since the Ann Arbor meeting. Another file is available at the same host that contains only the text marked with change bars:

 pub/ietf-hosts.rfc.chg

KEY PLAYERS:

Major contributions to the writing, revision, and editing have come from 25 people representing 20 organizations. At least 8 vendors have been represented.

SPINOFFS:

In writing this document, we came across a number of unresolved problems and undocumented areas. As a subsidiary task, the HRWG members have been inspired to prepare a number of RFC's on these topics. The RFC's for which we take credit are:

RFC-1063 ICMP MTU Discovery
RFC-1071 Internet Checksum Calculation
RFC-1073 Telnet Window Size Option
(draft) Telnet Terminal Type Extension RFC
(draft) Gateway Discovery RFC
(draft) TCP RST Extension RFC
Interconnectivity Working Group

Guy Almes (Rice)
almes@rice.edu

1) Statement of the charter and goal of the group

Within six quarters, specify, design, and demonstrate an initial production-quality implementation of inter-autonomous-system routing adequate to address the inadequate support for the NSFnet Model in current Inter-AS Routing.

Inadequate support for the NSFnet Model in current Inter-AS Routing:

Interconnectivity of the Internet no longer conforms to the stub model assumed by the designers of EGP. We currently suffer from (a) dangerous ad hoc interconnections due to the bold and (b) less interconnectivity due to the conservative. Further, we do not expect a new generation of inter-autonomous-system routing protocols to be designed, much less implemented, for several years. While the existing Open Inter-AS Working Group is needed to design a really new generation of protocols, and while the Short-Term Routing Working Group has made valuable contributions, we need a methodical approach to Inter-AS routing that can be applied in the context of the current Inter-agency Research Internet with its multiple national backbones, its evolving mid-level networks, and its exploding campus networks. This three-level NSFnet Model, while much more general than the older Stub Model, is much less general than the situation being addressed by the Open Inter-AS Working Group.

One possible technical approach is to appropriate and adapt the work of the EGP-3 Working Group. If no substantial improvement over the currently available tools can be produced within a short time frame, then it would be preferred to simply document what we've learned and await the product of the Open Inter-AS Working Group.

The costs of the current interconnectivity approach are large. They result in either having very labor intensive routing configurations or in less than adequate interconnectivity and the resulting long paths and lack of robustness.

2) Expected duration of the group: Six to eight quarters at the very most.
3) List of members: Initially, I am inviting:
 Guy Almes of Rice University/Sesquinet (almes@rice.edu), chair
 Mike Brescia of BBN/ARPAnet (brescia@alexander.bbn.com)
 Joe Choy of UCAR/USAN (choy@windom.ucar.edu)
 Phill Gross of MITRE/IETF (gross@gateway.mitre.org), ex officio
 Milo Medin of NASA/NSI (medin@nsipo.nasa.gov)
 Jacob Rekhter of IBM/NSFnet (yakov@ibm.com)
 Two of us (GA and JC) are active in NSFnet-related mid-level networks.
 Apart from PG, the others are active in different national
 backbones (ARPAnet, NSI, and NSFnet respectively). We need one more person
 from a mid-level and perhaps someone from ESnet. We are, as noted earlier,
 open to suggestions, but would like to keep the WG down to about eight
 members.

4) Give Mailing lists for the group:
 iwg@rice.edu

5) When was your last meeting?
 Last meeting at the Oct IETF,
 Next meeting will be at the Jan IETF.
MANAGEMENT INFORMATION BASE (MIB) WORKING GROUP

Craig Partridge (BBN)
craig@nnsc.nsf.net

1) Brief statement of charter and goals (ie, ~3-5 sentences with quantifiable goal like 'RFC specifying new Point-Point protocol')

As defined in RFC 1052, the original purpose was to devise an Internet MIB and Structure of the Management Information (SMI). When we finished, the WG stayed around as a forum where revisions of the MIB and SMI may be considered and approved.

2) Progress to date

MIB (version 1) came out in the summer of 1988. RFCs 1065/1066.

MIB (version 2) is planned for summer of 1989. Some proposals for changes in hand. First draft of new RFC expected in February.

After MIB-2 the crystal ball gets hazy. The key unresolved questions are how long does the MIB have to work for both CMIP and SNMP (to forestall parties fighting for position, I've said very loudly that MIB-2 will but the question is open after MIB-2 is done).

3) Estimate of timeframe for completion

As long as we need to keep tinkering with the MIB.

4) Dates of last and next meeting

Last meeting: October IETF
Next meeting: January 17th (IETF)

5) Name of WG mailing lists (if any; include address)

mib-wg@nnsc.nsf.net is for the "core" members
gwmon@sh.cs.net is for general discussion of network management issues
6) Names of key players

Karl Auerbach, Epilogue Technology
K. Ramesh Babu, Excelan
Lawrence Besaw, Hewlett-Packard
Terry Bradley, Wellfleet Communications
Jeffrey D. Case, University of Tennessee at Knoxville [OPEN-INOC WG]
James R. Davin, MIT (formerly Proteon)
Mark S. Fedor, NYSERNET
Phill Gross, NRI
Bent Torp Jensen, Convergent Technology
Lee Labarre, The MITRE Corporation [NETMAN WG]
Dan Lynch, Advanced Computing Environments
Keith McCloghrie, The Wollongong Group
Dave Mackie, 3Com/Bridge
Craig Partridge, BBN
Jim Robertson, 3Com/Bridge
Marshall T. Rose, The Wollongong Group
Greg Satz, Cisco
Martin Lee Schoffstall, Rensselaer Polytechnic Institute
Lou Steinberg, IBM
Dean Throop, Data General
Unni Warrier, Unisys
Joint Monitoring Access for Adjacent Networks focusing on the NSFNET Community Working Group. (A suggestion for an abbreviation is NSFNET Jo-MAAN, pronounced Joe - Man).

Sue Hares (Merit)
skh@merit.edu

Charter or Mission of NSFNET Jo-MAAN Working Group:

This Joint Monitoring Access for Adjacent Networks focusing the NSFNET Community Working group will:

- discuss how to identify problems in the next hop network
- create a list of existing tools which can solve these problems
- Create a list of routing topology maps of regionals

We are focusing on the NSFNET community - the NSFNET backbone, the regional networks attached to the NSFNET backbone, campus networks, and peer networks for the NSFNET which includes the ARPANET and the MILNET.

Who should attend:

Technical representatives from mid-level or peer networks. In the future we may want to extend this to technical representatives from campus networks. However, in interest of getting a lot of work done quickly I would like to limit the initial working group.

Time duration for working group:

6-9 months (August 31, 1989)

Dates of Meetings:

1st - October 18th, 1988 at October IETF Meeting
2nd - January 18-20, 1989 at January IETF Meeting
3rd - March, at Routing Workshop help by NSFNET
Mail group for working group:

njm@merit.edu

send requests to join to njm-request@merit.edu

Key players:

Susan Hares and Hans-Werner Braun. The idea came from David Wasley. However, all the regional technical representatives also play a key role.
OSPFIGP

Open SPF-based IGP (OSPFIGP) Working Group

Mike Petry (U. Maryland) and John Moy (Proteon)

Charter:
Design and development of a multi-vendor SPF-based Internet Gateway Protocol. The protocol should draw on existing SPF routing technology, notably the work done by BBN and DEC.

Features of the protocol should include: stability in a large, heterogeneous AS; TOS support; the ability to pass external routing information transparently; explicit support for IP subnetting; authentication of participating routers.

The reasons for choosing an SPF base are 1) So the internet community can gain experience with a routing algorithm other than the current Ford-based algorithms and 2) To ease ISO transition, since the current ANSI proposal is SPF based.

The group should take the protocol through implementation and performance evaluation.

Goals:
meeting June 88 (1st draft of specification)
next meeting (trial implementations, spec revision)
next 2 meetings (performance evaluation, spec revision?)
Then we disband.

Membership: Open

Mailing list: oigp@trantor.umd.edu (open)

Last meeting: October IETF meeting
Next meeting: February (by video teleconference)

Progress:
March 88 - IDEA005 published (protocol requirements)
May 88 - IDEA020 published (comparison to DEC IS-IS)
June 88 - First third of spec released for public review
Open Routing Working Group

Marianne Lepp (BBN), co-chair mlepp@bbn.com
Robert Hinden (BBN), co-chair hinden@bbn.com

1) Charter and Goals of the Working Group

The charter of the working group is to design a policy-based routing protocol to run between autonomous systems to replace EGP and hand-configured tables. The protocol should deal gracefully with a large, heterogenous Internet with constraints determined administratively.

<table>
<thead>
<tr>
<th>Document</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>completed -- IDEA 007</td>
</tr>
<tr>
<td>Draft architecture</td>
<td>March, 1989</td>
</tr>
<tr>
<td>Draft specification</td>
<td>December, 1989</td>
</tr>
</tbody>
</table>

The group's final goal is an RFC draft specification.

2) Progress to Date

- Requirements paper complete.
- Several draft architectures are under consideration.
- There is a consensus on the basic points of the architecture -- hierarchical, source routing, route set-up, link-state, and other points.

3) Estimate of Timeframe for Completion

One year to complete charter of writing a draft specification.

4) Dates of Last and Next Meetings

Last meeting: Nov. 9,10 in Westboro, MA
Next meeting: Feb. on the West Coast.

5) Name of Working Group Mailing Lists

Private mailing list: open-rout-wg@bbn.com
Public mailing list: open-rout-interest@bbn.com
6) Names of Key Players and Liaisons with Other Working Groups/Task Forces

Membership of the group (by invitation):

Robert Hinden
Ross Callon
Sergio Heker
Noel Chiappa
Mike Little
Marianne Lepp
Mike Petry
Zaw-Sing Su
Lixia Zhang
Paul Tsuchiya
Pat Clark
Tassos Nakassis

hinden@bbn.com
rcallon@erlang.dec.com@decwrl.dec.com
heimer@jvnca.csc.org
jnc@xx.lcs.mit.edu
little@MACOM4.ARPA
mlepp@bbn.com
petry@TRANTOR.UMD.EDU
zsuteca.istc.sri.com
lixia@xx.lcs.mit.edu
tsuchiya@gateway.mitre.org
paclark@ford-cosl@ford-wdl1.arpa
nakassis@icst-ecf.arpa

Other relevant WG,TF

Auto-nets
Routing subcommittee of the FRICC
This WG is reforming after a period of inactivity. The next meeting will be held at the January IETF meeting in Texas. A mailing list will be created at Wisconsin. It is the intent of the WG chairs to solicit participation from key OSI players, like NIST, ANSI X3S3.3, the Government OSI User's Group (ie, the originator's of GOSIP). The goal of the group are listed below.

1. Main Goal:

Help facilitate the incorporation of the OSI protocol suite into the Internet, to operate in parallel with the TCP/IP protocol suite. Facilitate the co-existence of the TCP/IP and OSI protocol suites.

2. Very Short Term Subgoals:

This section describes subgoals which are essential to initial deployment of OSI protocols in the Internet. We intend to work on these goals immediately, and finish initial action relatively quickly (hopefully within a couple of IETF meetings, and soon enough to influence initial OSI software releases).

2.1 Addressing

Specify an addressing format (from those available from the OSI NSAP addressing structure) for use in the Internet.

2.2 EON

Provide documentation of the EON experimental effort.

2.3 Berkeley Release 4.4

Review the OSI protocol mechanisms proposed for the upcoming Berkeley release 4.4. Coordinate efforts with Berkeley folks.

2.4 GOSIP

Review GOSIP. Open liaison with Government OSI Users Group (GOSIUG) for feedback of issues and concerns that we may discover.

2.5 Getting Gateways Into the Internet

Review short term issues involved in adding OSI gateways to the Internet. Preferably, this should allow OSI and/or dual gateways to be present by the time that Berkeley release 4.4 comes out.
Note, short term gateway sub-issues may include:

- Wonder whether funding is present to cause OSI gateways to happen

- Do we run dual gateways only and/or start with OSI over IP and/or vice versa. Does this depend on level of funding available?

- Determine what form of routing may be used in the short term (both within a domain, and between domains). Will this be fixed tables at first? (with migration to ANSI routing?)

- Recommend short term domain structure.

- Determine congestion control to be used in first release. Should this include use of the congestion experienced bit and related TP4 congestion algorithm?

3. Possible Short to Medium term sub-goals:

This section describes subgoals with are important to the success of OSI in the DoD Internet, but which are not essential to be completed before initial deployment of OSI protocols in the Internet. This is a tentative list, and is expected to be updated as we go along.

3.1 OSI Software Releases

Continue to work with Berkeley and CMU/MACH on future releases of OSI software.

3.2 Requirements for OSI Gateways / End Systems

Produce documentation on the requirements for OSI gateways and requirements for OSI end-systems, similar to the specs that have been produced for DoD protocol suites.

3.3 Dual Internets versus Encapsulation

Discuss relative strengths of dual internets versus encapsulation. Discuss possible problems with dual gateways (such as interaction between different congestion control schemes, and performance implications of running multiple routing schemes). Produce guidelines for a dual gateway.
3.4 Routing

Work on testing and deployment of the ANSI routing spec for OSI intra-domain routing in the Internet. We do not want to wait for a DP or a DIS. If we find bugs in the routing spec, then they become exponentially harder to fix as the standards process reaches further milestones.

Think about how a new inter-domain routing protocol may be used in the Internet.

3.5 Liaison

Continue liaison with GOSIP Users Group, as necessary.

Cooperate with ANSI and the NBS Implementors forums. Hopefully much or all of this can be done by phone, email, and overlap in corporate attendance, without the need for working group members to go out of their way to attend ANSI or NBS meetings.

3.6 Performance

Discuss performance of OSI. Determine which are implementation versus architectural factors in performance. Is the OSI releases in the kernel or user processes, what are layer interactions like, etc.

3.7 Directory Services

Outline the form of a possible Directory / Domain Naming service for the Internet. Should directory services for DoD and OSI suites be integrated? Are existing schemes suitable and available (e.g., current Internet directories, DEC DNA architecture).

4. NOT ISSUES FOR THIS GROUP:

IETF to ANSI liaison. There are a number of efforts in IETF that ANSI may be interested in for consideration in their future work. To a large extent, appropriate individuals in ANSI are already receiving IETF documentation and making use of this in their standards efforts. It is unlikely that we would be needed as a conduit for carrying documents, and we do not intend to be advocates to ANSI for IETF positions in general. Individual working group members may be advocates for some positions as they see fit.
PDNWG

Internet/Public Data Network Routing Group
("PDN Routing Group")

C-H Rokitanski, roki@isi.edu

1) Statement of the charter and goals of the group

The DoD INTERNET TCP/IP protocol suite has developed into de facto industry standard for heterogenous packet switching computer networks. In the US the ARPANET/MILNET connects several hundreds of INTERNET networks, however the situation is completely different in Europe: The only network which could be used as a backbone to allow interoperation between the many local area networks in Europe now subscribing to the DoD INTERNET TCP/IP protocol suite would be the System of Public Data Networks (PDN). However no algorithms are provided so far to dynamically route INTERNET datagrams through X.25 public data networks. Therefore the goal of the Internet/Public Data Network routing Group is to develop and to define the required routing and gateway algorithms for an improved worldwide routing of INTERNET datagrams through the System of Public Data Networks (PDN). Especially the following issues have been specified:

- Define the Cluster-Addressing Scheme and its application to public data networks as an INTERNET standard

- Specify gateway algorithms and protocols to be used by VAN-gateways

- Develop an X.121 Address Server/Resolution Protocol

- Develop (or support other working groups in developing) routing algorithms based on routing metrics other than hop-count: costs, delay, throughput, TOS, etc.

- Provide interoperability with ISO/OSI networks via the PDN

- Specification of protocols required for an European INTERNET/Public Data Network Information and Operation Center (cooperation with US-INTERNET NICs and NOCs)

- ISO-Migration of the INTERNET/PDN Cluster

2) Progress to date

See separate report of October meeting at the IETF. Mail to roki@isi.edu or gross@sccgate.scc.com for a copy.
3) Duration of the group

The PDN Routing Group should have a continuing nature, since
- Short-Term Issues (3 to 6 months)
- Medium-Term Issues (6 months to 2 years) and
- Long-Term Issues (2 to 5 years)

were specified. (See last question below)

4) Dates of last and next meetings:

 Last meeting - October IETF meeting
 Next meeting - April IETF meeting

5) Mailing lists

No mailing lists are installed so far. Bill Melohn has offered to support such lists on SUN.COM.

6) Key players:

Mike Brescia, BBNCC, brescia@park-street.bbn.com
Thomas E. Brunner, SRI International, brunner@span.istc.sri.com
Ross Callon, BBNCC, rcallon@park-street.bbn.com
Noel Chiappa, MIT, jnc@xx.lcs.mit.edu
Bill Melohn, Sun Microsystems, melohn@sun.com
Carl-H. Rokitansky, DFVLR, roki@a.isi.edu

To keep the group a workable size it should probably not exceed 10 members.
Performance and Congestion Control Working Groups

Allison Mankin (MITRE)
mankin@gateway.mitre.org

1) Brief statement of charter and goals

Charter is to collect and develop short-term techniques of improving Internet performance, methods which like TCP 'Slow-start' are retrofittable, inexpensive to implement, and contribute to globally better use of network resources. After a preliminary draft of a paper covering all Internet performance enhancement methods, it was decided to divide the material. Three RFCs are planned, whose tentative titles are:

- Specification of Slow-start TCP
- Gateway-Based Congestion Control
- Proposal to Eliminate Source Quench

2) Progress to date

Produced a preliminary draft of guidelines for performance enhancement of IP, TCP, and a number of applications. Reviewed the draft at Annapolis meeting, decided at Ann Arbor meeting that the paper should be divided into the three listed above. This decision was encouraged by a suggestion from the Host Requirements WG that the documentation of TCP congestion control be separated and speeded up.

3) Estimate of timeframe for completion

Twelve months or more.

4) Dates of last and next meeting

Last meeting: Ann Arbor, October 16
Next meeting: Austin, January 18

5) Name of WG mailing lists

ietf-perf@gateway.mitre.org
ietf-perf-request@gateway.mitre.org
6) Names of key players (also include liaisons with other WGs or TFs)

Our attendance averages 20, though many attendees are observers. The following are the members who have contributed writing or editing so far (this list is as accurate as possible given the chair's case of the flu while listing it):

- Art Berggreen (ACC)
- Dave Borman (Cray)
- Van Jacobson (LBL)
- John Lekashman (NASA/NAS)
- Allison Mankin (MITRE)
- Craig Partridge (BBN)
- K.K. Ramakrishnan (DEC)
- Bruce Schofield (DCEC)

We are cooperating with the Host Requirements and Connection-Oriented IP WGs (the liaison people include John Lekashman for the former and Claudio Topolcic for the latter). We should have some liaison with the End to End Task Force, but we don't.
Point-to-Point Protocol Working Group

Drew Perkins (CMU) and Russ Hobby (UC Davis)

1) Statement of charter and goals:

The goal of the Point-to-Point Protocol Working Group is to publish an RFC defining a standard protocol for the encapsulation of IP Datagrams over point-to-point links including asynchronous and synchronous serial lines. The protocol will include encapsulation schemes as well as an extensible option negotiation protocol allowing negotiation of IP addresses, data compression, etc.

2) Progress to date:

The first step towards this goal was to document the requirements for such a protocol. A draft RFC discussing these requirements was sent to the IETF mailing list in October and will hopefully be published as an RFC soon. The purpose of this document is to make sure that everyone in the working group is aware of all the various issues. The second step is the definition of the standard protocol. A first draft defining the basic encapsulation scheme has been mailed to the PPP mailing list for review.

3) Estimate of timeframe for completion

The current estimate for completion is approximately April (or the next IETF meeting after the January meeting).

4) Dates of last and next meeting

The last meeting was at the October IETF, the next will be at the January IETF.

5) Name of WG mailing lists (if any)

ietf-ppp@ucdavis.edu
ietf-ppp-interest@ucdavis.edu
ietf-ppp-request@ucdavis.edu

6) Names of key players

Drew D. Perkins, ddp@andrew.cmu.edu
Philip Prindeville, philipp@oliver.cs.mcgill.ca
Russ Hobby, rdhobby@ucdavis.edu
ST

ST and Connection-Oriented IP Working Group

Claudio Topolcic (BBN)

1) Statement of charter and goals

Produce a specification for the ST protocol that can be implemented by people outside the current small group of interested people and will support research in connection-oriented internet level protocols. Produce a gateway implementation of this protocol and at least one or two host implementations. Perform relevant experiments and gain experience. Produce a specification for a next generation connection like protocol if the results of the preceding experiments warrant it.

2) Progress to date

We have a preliminary draft of the ST specification, and we are talking it over and working toward a better draft. We have host implementations based on an older version of ST. We are almost done building a gateway implementation based on an older version of ST. We have a plan for how to look into producing a follow-on protocol. We have an outline of a "requirements document" which is the first step in this plan. We have not published any papers.

3) Estimate of timeframe for completion

The gateway implementation based on the older version of ST should be available in about 2 months. The ST specification should be available in 2 or 3 months. The host and gateway implementations based on the new ST specification should be available within six months of the specification, or about 8 or 9 months from now. The requirements document should be done within 3 months or so. The specification for the follow on protocol should be done in about a year.

4) Dates of last and next meeting

The last meeting was on Oct 17 1988 at Ann Arbor Michigan. The next meeting will be on January 17 1989 at Austin Texas.

5) Name of WG mailing lists

 Mailing list is "cip@bbn.com".

6) Names of key players

Claudio Topolcic, BBN, chairman, Ross Callon, DEC, Steve Casner, ISI, Phil Park, BBN, Guru Parulkar, Washington University, KK Ramakrishnan, DEC.
TELNET Linemode Working Group

David Borman (Cray)
dab@cray.com

1) Statement of charter and goals

The TELNET Linemode working group is writing an RFC to describe a standard method of doing line mode TELNET (pushing the character processing to the front end whenever possible, and only sending completed lines across the network)

2) Progress to date

A draft RFC (IDEA16) has been produced. See below for timeframe to completion.

3) Estimate of timeframe for completion

The draft document (IDEA16) has been re-worked to be very close to what the final RFC will look like. The next meeting should be the last meeting needed to reach closure.

4) Dates of last and next meeting

Last meeting - Ann Arbor IETF
Next meeting - this next IETF

5) Name of WG mailing lists

linemode@uc.msc.umn.edu
linemode-request@uc.msc.umn.edu - To be added or deleted

6) Names of key players (also include liaisons with other WGs or TFs)

We have met twice. Below are all the people who have attended meetings, and which meetings they attended.

1 2 David Borman
1 2 Mike Karels
1 2 Bruce J Schofield
1 2 Louis A. Mamakos
1 Stuart Levy
1 Coleman Blake
1 David Wasley
1 Allan Fischer
1 Philip Prindeville
2 Joyce Reynolds
2 Bill Westfield
2 Allen Cole
User Services Working Group

Karen Bowers (NRI)
bowers@sccgate.scc.com

This is a new working group. The first meeting will be held at the January IETF meeting in Texas. The draft charter and proposed goals are listed below. This will be fine-tuned at the initial meeting. A mailing list has not yet been established. For more information, send email to Karen Bowers (bowers@sccgate.scc.com).

The information below is organized as:

1) draft Charter with Key Objectives,
2) Selection Criteria for determining what issues/actions should be undertaken first
3) Issues/Actions for Consideration

CHARTER (draft): to provide a liaison among existing and newly forming network informations centers, network managers and the broad network user community.

Objectives: to consolidate and enhance the tools of existing user assistance and information services and make these pooled resources universally available to novice and experienced users alike.

to develop new and innovative network information/directory assistance techniques/methods in terms of general user support services (not technology-specific applications).

SELECTION CRITERIA (for projects/requirements to be addressed by the User Services Working Group):

1. Project/selected action must lend itself to accomplishment within a reasonable timeframe (say 1-3 years).

2. Must culminate in a measurable/quantifiable end result (production oriented; e.g. RFC, network users directory, etc.)

3. Must address user assistance needs and not technology specific requirements (e.g. routing)

4. Products/tools resulting from these efforts must not only address user information requirements but must be designed to be both maintainable and easily "updateable".
ISSUES/ACTIONS FOR CONSIDERATION (to be further expanded):

- A national directory (or directories) of existing networks and associated points of contact to include:

 1. short/concise description of each network, net #, and net maps,
 2. POCs for various actions: permission to connect, network engineering, network ops, 800#s, support services (such as assistance with routing/performance problems), etc.
 3. a standardized format describing how to connect: permission requirements, network specific procedures, guidance on physical (circuit/equipment) interface requirements and software (protocol) requirements, and Internet specific procedures (initial configuration requirements: net # assigned, name server, subnets, hand configure routing tables...)

- How to set up and establish national procedures for net connections (=RFC).

- How to best answer new user problems

- A national (an international) network user directory (as a phone book)

- A guide to user training resources
3. IETF ATTENDEES
IETF ATTENDEES

The following is a list of people who attended all or part of the October 1988 IETF meeting. All organization affiliations are listed as submitted, and for brevity have not been expanded (Example: DCA vice Defense Communications Agency).

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almes, Guy</td>
<td>Rice University</td>
<td>almes@iapetus.rice.edu</td>
</tr>
<tr>
<td>Almquist, Philip</td>
<td>Stanford/self</td>
<td>almquist@Jessica.Stanford.EDU</td>
</tr>
<tr>
<td>Aronson, Cathy</td>
<td>Merit</td>
<td>CJA@merit.edu</td>
</tr>
<tr>
<td>Atlas, Stephen</td>
<td>BBN</td>
<td>Satlas@BBN.COM</td>
</tr>
<tr>
<td>Beeman, Roger</td>
<td>NWnet(Boeing)</td>
<td>beeman@boeing.com</td>
</tr>
<tr>
<td>Berggreen, Art</td>
<td>ACC</td>
<td>art@acc.arpa</td>
</tr>
<tr>
<td>Blank, Larry</td>
<td>UMich</td>
<td>ljb@merit.edu</td>
</tr>
<tr>
<td>Boivie, Rick</td>
<td>IBM</td>
<td>rboivie@ibm.com</td>
</tr>
<tr>
<td>Borman, Dave</td>
<td>Cray Research</td>
<td>dab@cray.com</td>
</tr>
<tr>
<td>Bosack, Len</td>
<td>cisco Systems</td>
<td>Bosack@mathom.cisco.com</td>
</tr>
<tr>
<td>Braden, Bob</td>
<td>Wellfleet Comm</td>
<td>braden@isi.edu</td>
</tr>
<tr>
<td>Bradley, Terry</td>
<td>UMich</td>
<td>(617) 275-2400</td>
</tr>
<tr>
<td>Bratton, Eric</td>
<td>UMich</td>
<td>ericb@caen.engin.umich.edu</td>
</tr>
<tr>
<td>Braun, Hans-Werner</td>
<td>BBN</td>
<td>hwb@mcr.umich.edu</td>
</tr>
<tr>
<td>Brescia, Mike</td>
<td>Cornell</td>
<td>BRESCIA@BBN.COM</td>
</tr>
<tr>
<td>Brim, Scott</td>
<td>NOSC</td>
<td>SWB@DEVVAX.TN.CORNELL.EDU</td>
</tr>
<tr>
<td>Broersma, Ron</td>
<td>Wellfleet Comm</td>
<td>ron@nosc.mil</td>
</tr>
<tr>
<td>Burruss, John</td>
<td>DEC</td>
<td>(617) 275-2400</td>
</tr>
<tr>
<td>Callon, Ross</td>
<td></td>
<td>callon%erlang.dec.com</td>
</tr>
<tr>
<td>Carpenter, Geoff</td>
<td>IBM Research</td>
<td>GCC%YKTVMX@CUNYVM.CUNY.EDU</td>
</tr>
<tr>
<td>Casner, Steve</td>
<td>USC/ISI</td>
<td>CASNER@ISLEDU</td>
</tr>
<tr>
<td>Chiappa, J. Noel</td>
<td>MIT/Proteon</td>
<td>JNC@xx.lcs.mit.edu</td>
</tr>
<tr>
<td>Chinyo, Bilaz</td>
<td>Merit</td>
<td>bnc@merit.edu</td>
</tr>
<tr>
<td>Choy, Joe</td>
<td>NCAR</td>
<td>choy@ncar.ucar.edu</td>
</tr>
<tr>
<td>Chung, Anthony</td>
<td>Sytek</td>
<td>(415) 966-7430</td>
</tr>
<tr>
<td>Cohrs, Dave</td>
<td>U. of Wisconsin</td>
<td>dave@cs.wisc.edu</td>
</tr>
<tr>
<td>Cole, Allen</td>
<td>Univ. of Utah</td>
<td>cole@cc.UTAH.EDU</td>
</tr>
<tr>
<td>Collins, Mike</td>
<td>LLNL</td>
<td>collins@NMFEC.ARPA</td>
</tr>
<tr>
<td>Drescher, J. E.</td>
<td>Northwestern</td>
<td>jpd@accuvax.nwu.edu</td>
</tr>
<tr>
<td>Fedor, Mark</td>
<td>IBM Corporation</td>
<td></td>
</tr>
<tr>
<td>Finkelston, Dale</td>
<td>NYSERNET</td>
<td></td>
</tr>
<tr>
<td>Frank, Randy</td>
<td>Midnet</td>
<td></td>
</tr>
<tr>
<td>Geretz, Lionel</td>
<td>U Mich</td>
<td></td>
</tr>
<tr>
<td>Gerich, Elise</td>
<td>ACC</td>
<td></td>
</tr>
<tr>
<td>Gerlach, Chuck</td>
<td>NSFNET/Merit</td>
<td></td>
</tr>
<tr>
<td>Gilligan, Bob</td>
<td>AT&T</td>
<td></td>
</tr>
<tr>
<td>Gross, Phill</td>
<td>Sun</td>
<td></td>
</tr>
<tr>
<td>Gross, Martin</td>
<td>NRI</td>
<td></td>
</tr>
<tr>
<td>Hain, Tony</td>
<td>DCA</td>
<td></td>
</tr>
<tr>
<td>Hares, Susan</td>
<td>LLNL</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MERIT/NSFNET</td>
<td></td>
</tr>
</tbody>
</table>
Hastings, Gene
Hobby, Russ
Hunter, Steven
Jacobsen, Ole
Jacobson, Van
Jordt, Dan
Karels, Mike
Karn, Phil
Katz, Dave
Knopper, Mark
Krol, Ed
LaBarre, Lee
Lakey, Jerry
LaQuey, Tracy
Lazear, Walt
LeKashman, John
Lepp, Marianne
Lottor, Mark
Love, Paul
Lowe, Ken
Lynn, Charles
Malkin, Gary
Mamakos, Louis
Mankin, Allison
Marshall, George
Mathis, Matt
McCloghrie, Keith
Medin, Milo
Melohn, Bill
Merritt, Don
Mockapetris, Paul
Morris, Don
Moy, John
Mundy, Russ
Natalie, Ron
Nguyen, Carolyn
Nitzan, Rebecca
Norton, Bill
Opalka, Zbigniew
Park, Phillip
Parker, Paul
Partridge, Craig
Parulkar, Guru
Perkins, Drew
Petry, Mike
Prindeville, Philip
Ramakrishnan, K.
Reichlen, Gladys
Rckhter, Jacob
Reschly, Robert
Reynolds, Joyce
Rochlis, Jon
Rokitansky, Carl
Schiller, Jeff

PSC
UC DAVIS
LLNL
ACE
LBL
U of Washington
UCBerkley
Bellcore
Merit
Merit
U. of Illinois
MITRE
Merit
UTexas-Austin
MITRE
NASA
BBN
SRI
SDSC
U of Washington
BBN
Protest
Univ. of Md
MITRE Corp.
Ungerman-Bass
PSC
Wollongong
NASA/NSI
Sun Micro
BRL
SI
NCAR
Protest
DDN(DCS B602)
Rutgers
AT&T
ESNET,DOE LLNL
Merit
BBN
BBN
CMU
BBN STC
Washington Univ.
CMU
Univ. of Md
McGill Univ.
DEC
MITRE
IBM
BRL
USC/ISI
MIT
Fern U.Hagen
MIT

hastings@morgul.psc.edu
RDHOBBY@UCDAVIS.EDU
Hunter@NMFECC.Arpa
ole@csli.Stanford.edu
Van@LBL-CSAM.arpa
danj@blake.acs.washington.edu
karels@acbarpa.Berkeley.edu
Karn@thumper.bellcore.com
Dave_Katz@um.cc.umich.edu
MKnopper@Merit.edu
Krol@uxg.cso.uiuc.edu
cel@mitre_bedford.arpa
JLL@mitre.edu
tracy@emx.utexas.edu
lazear@gateway.mitre.org
lelash@orville.nasa.gov
mlepp@bbn.com
MKL@SRI-NIC.ARPA
LOVEEP@SDS.SDSC.EDU
KEN@BLAKE.ACS.WASHINGTON.EDU
CLYN@BBN.com
GMALKIN@PROTEON.COM
lovie@trantor.umd.edu
mankin@gateway.mitre.org

mathis@faraday.ece.CMU.edu
kzm@twg.com
medin@nsipo.nasa.gov
Melohn@Sun.COM
merritt@BRL.MIL
PUM@isi.edu
morris@ncar.ucar.edu
jmoy@protest.com
mundy@beast.ddn.mil
Ron@Rutgers.Edu
mhn@caelum.att.com
NITZAN@NMFECC.ARPA
wbn@merit.edu
Zopalka@BBN.COM
PPARK@BBN.COM
PAUL.PARKER@CS.CMU.EDU
craig@nsc.nsf.net
guru@flora.wasti.edu
ddp@andrew.cmu.edu
petry@trantor????
philipp@cs.mcgill.ca
rama%erlang.dec@decwrl.dec.com
reichlen@gateway.mitre.org
yakov@IBM.COM
reschly@brl.mil
jKREY@ISI.EDU
jon@athena.mit.edu
roki@DHAFEU52.Bitnet
jis@bitsy.mit.edu
Schofield, Bruce
Sheridan, Jim
Spafford, Gene
St. Johns, Mike
Stahl, Mary
Stine, Bob
Stone, Geof
Thixton, Cal
Ticknor, Paul
Topolcic, Claudio
Veach, Ross
Vielmetti, Edward
Waldbusser, Steve
Ward, Carol
Warrier, Unni
Westfield, Bill
Wilder, Rick
Wolff, Steve
Yu, Jessica

DCEC
IBM
Purdue CS/SERC
DDN
SRI(NIC)
SPARTA
Ntwk Sys Corp.
NeXT
NASA
BBN
UIUC
UMich
CMU
Westnet
Unisys
cisco Systems
MITRE
NSF
Merit

SCHOFIELD@EDN-UNIX.ARPA
jShERIDA@IBM.COM
spaf@cs.purdue.edu
StJohns@beast.ddn.mil
STAHL@SRI-NIC.ARPA
geof@nsco.network.com
Cal_Thixton@NeXT.COM
ticknor@prandtl.nasa.gov
topolcic@bbn.com
RRV@UXC.CSO.UIUC.EDU
emv@umich.edu
waldbusser@andrew.cmu.edu
cward@spot.colorado.edu
unni@cs.ucla.edu
BillW@cisco.com
rick@gateway.mitre.org
steve@note.nsf.gov
jyy@merit.edu
4. FINAL AGENDA
Final Agenda, 17-19 October 88 IETF

This was the final agenda for the October 17-19 IETF meeting at the University of Michigan in Ann Arbor. The meeting was hosted by Hans-Werner Braun and Elise Gerich of Merit.

MONDAY, OCTOBER 17

9:00 am Opening Plenary, Introductions and Local Arrangements

9:30 am Working Group Morning Sessions

- Host Requirements, Members Only (Braden, ISI)
- ST and Connection-Oriented IP (Topolcic, BBN)
- CMIP-Over-TCP Net Management (Lee LaBarre, MITRE)
- Interconnectivity and EGP3 (Almes, Rice)
- Open SPF IGP (Petry, UMD and Moy, Proteon)

12:00 pm Lunch

1:30 pm Working Group Afternoon Sessions

- Host Requirements, Open (Braden, ISI)
- TELNET Linemode (Dave Borman, Cray)
- Authentication (Schiller, MIT)
- Performance and Congestion Control (Mankin, MITRE)
- Point-Point Protocol (Perkins, Hobby, Prindeville)
- PDN Routing (Rokitansky, FernUni Hagen)

5:00 pm Recess

7:30 pm Working Group for Joint Monitoring Access for Adjacent Networks focusing on the NSFNET Community (Hares, Merit)

TUESDAY, OCTOBER 18

9:00 am Opening Plenary

9:15 am Morning Working Group Sessions

- Host Requirements, Members Only (Braden, ISI)
- TELNET Linemode (Dave Borman, Cray)
- Authentication (Schiller, MIT)
- Performance and Congestion Control (Mankin, MITRE)
- Point-Point Protocol (Perkins, Hobby, Prindeville)
- PDN Routing (Rokitansky, FernUni Hagen)

11:30 am Lunch

1:00 pm Opening Plenary Statement (Gross, MITRE)
1:15 pm Network Status Reports

- Merit NSFnet Report (Braun, UMich)
- IBM NSFnet Report (Drescher, IBM)
- Arpanet/DDN Report (Lepp, BBN)
- DDN Report (Brescia, BBN)
- Interop 88 Network Report or 'How to build a complex internet in 2 days' (Almquist)

3:30 pm Break
3:45 pm Network Performance Presentations

- Packets Over A Different Kind Of Ether, including Amateur Packet Radio Demonstration (Karn, Bellcore)
- Keeping The Usual Ether Filled Up With High Performance TCP (Jacobson, LBL)

5:00 pm Recess
7:00 pm NSFNET NOC Tour

WEDNESDAY, OCTOBER 19

9:00 am Congestion Control Observations Using NETMON (Mankin, MITRE)
9:30 am Working Group Reports and Group Discussion

- Authentication (Schiller, MIT)
- CMIP-over-TCP (CMOT) (LaBarre, MITRE)
- Interconnectivity (Brim, Cornell/Lepp, BBN)
- Host Requirements (Braden, ISI)
- Internet MIB (Partridge, BBN)
- Joint NSFNET/Regional Monitoring (Hares, Merit)
- Open SPF-based IGP (Petry, UMD)
- Open Systems Routing (Lepp, BBN)
- PDN Routing (Rokitansky, FernUni Hagen)
- Performance and CC (Mankin, MITRE)

12:00 pm Lunch
1:00 pm Working Group Reports and Group Discussion (cont'd.)

- Pt-Pt Protocol (Perkins, CMU)
- ST and CO-IP (Topolcic, BBN)
- TELNET Linemode (Borman, Cray)

1:45 pm What Is Usenet?, What Is NNTP? (Spafford, Purdue)
2:30 pm The NIC Domain Chart (Lottor, NIC)
2:45 pm On Some T1 Satellite Link Performance (Lekashman, Ames)
3:15 pm Concluding Plenary Remarks
3:30 pm Adjourn (Rush to Airport)
5. WORKING GROUP REPORTS/SLIDES
ANN ARBOR, MI ACTIVITIES
17-19 OCTOBER 1988
Authentication

Jeff Schiller
MIT
Requirements document
SNMP authentication
Kerberos RFC

SNMP authentication:
using "communities" mechanism
define categories of authentication protocols:

<table>
<thead>
<tr>
<th>categories</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial</td>
<td>des</td>
</tr>
<tr>
<td>password</td>
<td>kerberos</td>
</tr>
<tr>
<td>safe</td>
<td>rsa</td>
</tr>
<tr>
<td>private</td>
<td>other</td>
</tr>
</tbody>
</table>
community = nethack
auth = private, kerberos

client

NOC

community = internal
auth = private, des

entity

monitored entities are simple complexity and access control centralized at NOC
CMIP-over-TCP (CMOT)
(NETMAN)

Lee LaBarre
MITRE

Unni Warrier
UNISYS
The NETMAN (CMOT) WG met Oct. 17 and 18 at the IETF meeting in Ann Arbor, MI. The meeting occurred in two separate morning sessions.

Morning of Oct. 17

- Lee LaBarre provided a review of the groups charter, goals, and status as stated in IETF form 2.
- The group defined a set of issues for consideration by the IETF

MIB Working Group, including:

- definition of the MIT (naming or object instance tree),
- the distinction between Object class and attribute,
- definition of distinguished attributes for objects,
- the specification of optional attributes in the MIB, and the impact on aggregate objects, e.g., table entries,
- the need for definition of procedures and objects for event and security management,
- the definition of thresholds.

These issues were raised in the MIB WG meeting, and all but thresholds received priority consideration for work this year. Work on thresholds will depend on contributions from the NETMAN WG, and is contingent on the existence of an event control mechanism.

Morning Oct. 18

- We decided the NETMAN agreements would include the entire CMIS/P, ROSE, and ACSE protocol set, but stipulate a mandatory subset of services.
- Recommendations were suggested for modifications to IDEA0017, the thin presentation layer, including:
 - investigate necessity for multiple PCIs, e.g., ROSE, ACSE, CMIP version, MIB version,
 - use of transports other than TCP and UDP, such as VMTP, etc.
 - negotiation of transport protocol for desired QOS, investigate the multiplexing of associations across a single TCP connection,
A decision was made to develop a proxy mechanism based on the use of object instance structure. This would minimize the number of associations and TCP connections used for proxy. It would also work in chaining a request through multiple managers.

We reviewed the CMOT agreements document drafted by Unni Warrier and suggested revisions where appropriate. Lee LaBarre and Unni Warrier agreed to contribute new text to the document.

The issue of specifying alternative QOS for management purposes was raised by Keith McCloghrie. He suggested that only low quality (UDP) service should be specified since manager applications might have to be prepared to deal with either QOS anyway, and UDP would place the lowest burden on agents. This issue will be addressed at the next meeting.

The distribution list for the demo was opened up to a wider membership and the name changed to netman@gateway.mitre.org.
NetMan Working Group Report

Internet Engineering Task Force (IETF)

Unni Warrier

(213) 829-7511 x5694

UNÍSYS Corporation
Distributed Architecture
Defense Systems
2400 Colorado Avenue
Santa Monica, CA 90406

19 October 1988
NetMan Working Group Report

CHARTER

Charter: As described in RFC1052.

- Develop a long term approach to management of the Internet based on the OSI Network Management Framework and the Common Management Information Protocol (CMIP).

- Provide input to the OSI standards process based on experience in the Internet, and thereby influence the final form of OSI International Standards on network management, in particular CMIS/P.
TCP to OSI Transition

Figure 2
APPORACH

a. Develop prototype implementors agreements on CMIP over TCP.

b. Develop prototype implementations based on the CMOT agreements and IETF SMI and MIB agreements.

c. Experiment with CMOT and extensions to the SMI and MIB.

d. Develop final implementors agreements for CMOT.

e. Promote development of products based on CMOT.

f. Provide input to the OSI Network Management standards process in time to effect the International Standards.
MEMBERSHIP

- Expected duration of group:
 The groups work should be completed by June 1989.

- Membership:
 Open
ACTIVITIES

Achieved goals:

a. Overview document (IDEA0012)
 Thin Presentation layer (IDEA0017)
 Prototype Implementors Agreements (IDEA0025)

b. Nine vendor prototype implementations demonstrated at
 INTEROP 88 in Santa Clara, CA.

c. Experimentation occurred during development of the
 INTEROP demo, and is continuing.

d. Draft implementors agreements are written for the DIS CMIP
 over TCP (CMOT). Proposals for extending the SMI and MIB
 are in progress.
ACTIVITIES (Cont.)

e. Thirteen corporations participated in the INTEROP 88 demo. Nearly all the vendors in that group have indicated that they expect to field products during 1989 based on CMOT implementors agreements.

f. Several Working Group members are participating in the OSI network management standards organizations and carrying the CMOT experience into that forum.
NetMan Working Group Report

NetMan DEMO Participants

Advanced Computing Environments
Communications Machinery Corporation
Convergent Technologies
Digital Equipment Corporation
Epilogue Technology Corporation
Excelan
Hewlett Packard Corporation
MITRE Corporation
SUN Microsystems
Sytek
3COM Corporation
Ungermann-Bass
UNiSYS Corporation

19 October 1988
DEMOSCENARIO

Network Manager

CMOT Machine

User Interface

Application

Network Management Language

OSI CMIP

ROSE ACSE DS

Thin Presentation

OSI Presentation

OSI Session

TCP/IP TP4/IP

Network

Dual-Suite Network Manager System

19 October 1988
NetMan Working Group Report

DEMO SCENARIO (Cont.)

- Variables aligned with MIB WG RFCs
- Experimental extensions for Events and Thresholds
- GETs
- SETs
- Event Reports
- Tables, rows of tables (aggregate objects)

UNISYS

19 October 1988
NetMan Working Group Report

LESSONS from DEMO

- Events worked.
- Thin Presentation worked.
- Agent code size as low as 40K on terminal server, PC.
- Modify agreements from this experience.

19 October 1988
FUTURE WORK

- Align with DIS, new Implementer’s agreement (RFC- CMOT) in progress.
- Extensions to MIB, SMI proposals in progress.
- IDEA17 (Thin presentation) wrap-up and make into RFC.
CMOT (NETMAN) WG

- Reviewed group charter/goals/status
- Defined issues for MIB WG to consider
 - object class/attribute/instance
 - distinguished attributes for objects
 - optional objects/attributes in MIB
 - Event management
 - thresholds

- Agreed develop RFC on total DIS CMIS/IP, ROSE, ACSE and stipulate mandatory sub-

- Recommend mods to IDEAO17 (Thin Presentation)
 - multiple PCIs
 - map to other transports (TCP, UDP, VMTP?...)
 - negotiation for transport
 - multiplexing associations on one TCP conn.
 - use of Domain name service
CMOT (NETMAN) WG (cont)

- Develop proxy mechanism based on object instance
 - to reduce number of associations / TCP connections

- Reviewed CMOT Draft RFC

- Change name mail distribution list & open to new members

nmo@mooss@gateway.mitre.org

netman@gateway.mitre.org
Host Requirements

Bob Braden
USC-ISI
IETF Host Requirements Working Group

REPORT FROM ANN ARBOR IETF MEETING
October 17-19, 1988
Bob Braden

I. INTRODUCTION

The Host Requirements Working Group met for 1.5 days at the IETF meeting in Ann Arbor, Michigan. This meeting was very important, since the Host Requirements RFC has reached a stage when it seems to be nearly finished, and because we are rapidly approaching our self-imposed deadline, the end of calendar 1988.

All discussions were based on the October 11, 1988 version of the spec.

II. SESSIONS AND ATTENDEES

* Monday, October 17, Morning Session

The Working Group met in closed session, with the following attendees:

Bob Braden (ISI), Dave Borman (Cray Research), Noel Chiappa (Protein/MIT), Phil Karn (Bellcore), John Lekashman (NASA), Mark Lottor (SRI-NIC), Charlie Lynn (BBN), Paul Mockapetris (ISI), Allison Mankin (Mitre), Craig Partridge (BBN/NNSC), Drew Perkins (CMU), Bruce Schofield (DCEC), and Cal Thixton (NEXT).

Allison Mankin and Dave Borman both took minutes. A list of outstanding issues formed the agenda.

* Monday, October 17, Afternoon Session

The Working Group invited all interested people to an open session, in which the assembled group went through the entire document, section by section. There were 25 attendees, and most of the group kept picking the carcass clean until 6:30PM! Now, THAT is dedication. On the other hand, no one had been able to read the document all the way to the end, so that comments were quite sparse for the Application Layer and non-existent for the Support Services.

All those attending in the morning attended in the afternoon (except for Craig Partridge, who had to chair another meeting).
Additional people in the open session were:

Almquist (Stanford), Collins (MFENET-II), Gilligan (Sun), Jacobson (LBL), Karels (UCB), Katz (UMich), Melohn (Sun), Nitzan (MFENET-II), Opalka (BBN), Parker (CMU), Rochlis (MIT Athena), Schiller (MIT), and Westfield (Cisco).

Dave Borman again took minutes, for which I am immensely grateful.

* Tuesday, October 18, Morning Session

A final closed meeting was held, with Braden, Chiappa, Karn, Lekashman, Mockapetris, and Partridge in attendance. The group dealt with the remaining issues from the original list, and with some of the new issues raised at the open session. The major discussion item was Dead Gateway Detection.

III. QUESTIONS AND DECISIONS

We now summarize the important points that were raised in all these meetings, both those that were decided and those that are still undecided.

Introduction

- Section 1.1.4 Embedded Gateway Code

 Suggested: there are advantages to embedded gateway functionality other than simple convenience [Melohn]. ACTION ITEM: Draft some text: Melohn.

Link Layer

- Section 2.3.1 Trailer Negotiation

 Agreed: Need a definition of how trailer negotiation is done. ACTION ITEM: Draft some text: Karels.

- ARP

 Agreed: ARP implementation MUST hold onto at least one packet [the most recent] destined for a given unresolved target address.

- Section 2.2.2 ARP Cache Validation
Suggested: the ARP cache timeout time of 60 seconds currently specified is much too short [Jacobson]; this is because ARP cache timeouts generate traffic that increases quadratically with the number of hosts on the Ether; timeout should be at least 5 minutes.

<<Ed: The discussion of ARP cache validation in the current draft is based on experience at CMU with a particular timeout algorithm. Two specific ARP cache algorithms have been proposed, and one or both should be written up as RFC's. The argument for a 5 minute timeout is based on the idealistic assumption that Proxy ARP is broken and ought to be abolished; however, Proxy ARP has many dedicated supporters.

While the quadratic argument is somewhat theoretical, lots of experience shows that it would be a mistake to ignore it. It is unclear how to resolve this issue.>>

- Section 2.4 Link/Internet Layer Interface

Agreed: RFC ought to define interface, including upcall for dead gateway discovery.

- Internet Layer

- Section 3.2.1.6 Type of Service

The Host Requirements spec requires TOS at all levels (application, transport, Internet) in order to break the chicken-and-egg problem with gateway implementations of Type-of-Service. A future "Assigned Numbers" RFC will include recommended values for the TOS bits for use by the major application protocols.

It seems likely that gateways will implement TOS by granting one TOS attribute (low delay, high throughput, or high reliability) while diminishing the others to some extent. Because of this and for simplicity, the recommended values will set at most one attribute bit.

Suggested: the Host Requirements RFC should give the philosophy of the bits, even though the actual recommended values are in Assigned Numbers.

Agreed: An application SHOULD be able to change TOS during lifetime of TCP connection, to support single-connection applications like SMTP. This MAY take the form of setting TOS on every SEND call.
Agreed: The TOS values in applications must be configurable, because we can only guess at the actual service effects of particular TOS bit combinations, and because particular hosts will want to tune the TOS values for special situations.

Agreed: TCP segments in each direction will have TOS determined by application on sending side. If the applications at the two ends specify different TOS values, then ACK's will come back with different TOS than was used to send the data.

Agreed: A transport protocol MAY communicate to its application the TOS with which incoming datagrams arrived.

- Section 3.2.1.7 Time to Live

TTL: is it a time, or a hop count? This has been debated at length by the Working Group, was debated in both the closed and open sessions at Ann Arbor, and is still unresolved.

There is considerable sentiment in favor of redefining the TTL field as a pure hop count. However, the editor believes this would be a fundamental change to the architecture, which precludes making this change in the present Host Requirements document. Those who support the hop-count-only position need to make a cogent argument, considering all facets of the problem, in a published paper or RFC.

- Section 3.2.1.5 Identification Field

Agreed: Drop recommendation to base Ident field on the triplet: (src, dest, prot).

- Section 3.2.1.8 Source Route Options

The Editor detected some willingness in the open meeting to take the Editor's side, against source routing by hosts.

- Section 3.2.1.9 Mis-Addressed Datagrams

Agreed: An IP layer MAY check each incoming datagram for a bogus source IP address.

- Section 3.2.2.4 Time Exceeded

Agreed: ICMP Time Exceeded (Reassembly) may be used to trigger an MTU discovery procedure (see e.g. RFC-1063) when one is standardized, but the present document should specify that these ICMP messages are to be ignored.
Section 3.2.2.5 Parameter Problem

Agreed: do not need new code for missing option.

Section 3.2.2.6 Echo Request/Reply

Agreed: Record Route and Timestamp options are to be returned in the Reply, with the present host entered (i.e., as if the echoing host were a hop in the path); the options will not be truncated.

Section 3.2.2.9 Address Mask Request/Reply

This area has gotten a lot of attention <<Ed: more than it deserves>> from the WG, and discussion continues.

The open meeting and the closed WG meeting differed on the importance of a host implementing a dynamic way to learn the Address Mask (open: MAY, WG: SHOULD). There has been difficulty figuring out how to limit replies to authoritative sources. We cannot decide whether a statically configured address mask should take precedence over a dynamically determined one; people have arguments for both.

Agreed: a host with a statically-configured mask MUST NOT automatically be authoritative for address masks; to control this, the configuration needs an "Address Mask authoritative" flag.

Agreed: authoritative source for address mask reply may be a gateway or designated host(s) (e.g., a file server for diskless workstations).

Suggested: Internet architecture should logically pair address mask and IP address, so address mask for an interface should be determined at boot time by the same mechanism that is used to determine the IP address of that interface; therefore, ICMP Address Mask messages solve the wrong problem [Braden].

Section 3.3.1.3 Route Cache

Suggested: although the present draft recommends that the route cache be based upon destination hosts, the use of destination networks as the cache key is an important optimization [Karels].

Suggested: Timing out routing cache entries is a bad idea because of scaling arguments [Jacobson]. Pinging of gateways in use is acceptable when neither lower-level nor higher-level advice are available.
Agreed: A route cache entry should include a timestamp indicating when the gateway was last set or updated.

The Working Group is quite clearly and lamentably confused on the entire issue of dead gateway detection. In the Working Group, several different approaches have been proposed, discussed, drafted into RFC's, and later rejected.

The conclusion from the Ann Arbor meeting was that the best we can do currently is to list the alternatives and state the arguments.

- **Section 3.3.4 Multihomed Hosts**

 Suggested: the model of multihoming contained in the current draft should be replaced by a different model [Karels].

TCP

- **Section 4.2.2.2 Use of Push**

 An animated discussion of the section on Push was a mixture of confusion and religion. Some believe in Push, some do not. The people who don't believe in Push (falsely) accused those who do of using Push to improve performance. Agreed: Push has nothing to do with performance, only correctness. In fact, the opposite it true: it is NOT pushing that can improve performance in some systems.

- **Various Sections**

 Van Jacobson suggested changes to clarify or correct the text concerning the relationships between the Nagle and slow-start algorithms, between slow-start and the older "retransmit only the front of the queue" rule, and between Push and the Nagle algorithm. He also suggested improvements in the discussion of delayed ACK's.

<<Ed: The discussion of TCP performance requirements is included in the Host Requirements RFC because the Performance Working Group has not yet completed their task of creating a comprehensive RFC on the subject. The discussion in the Host Requirements RFC is necessarily fragmentary>>
o Section 4.2.2.12 Retransmission Timeout

Agreed: change text to avoid implication that there must be a "retransmission queue" (implying that segment boundaries are recorded in this queue) [Karels]. There may be implementation advantages in deferring packetization until a segment is sent.

o Section 4.2.2.13 Shrinking Window

Agreed: document a pitfall -- when window shrinks from the right and in fact goes to zero [Karels].

o Section 4.2.3.2 Delayed ACK's

Agreed: current text omits an important advantage of delayed ACK's -- letting application have a shot at the CPU before an ACK is sent [Jacobson].

o Section 4.2.3.3 SWS

Agreed: modify sender-side SWS algorithm to handle windows smaller than MSS [Karels].

o Section 4.2.3.4 Connection Liveness

Agreed: The current draft, which specifies that connection liveness ought to be based upon retransmission count rather than time, is correct.

o Section 4.2.3.4 Keepalives

Suggested: mechanism that is documented in current draft is not the latest spiffy idea [Karels]. ACTION: supply text: Karels.

<<Ed: In general, the WG seems quite firm against TCP keepalives, although the current text in the document is rather wimpy on the subject.>>

o Section 4.2.? Data with Control

Agreed: a TCP MUST support data with a FIN bit, and SHOULD support data with a SYN bit [Karn].

o Section 4.2.3.12 Invalid Address

Agreed: A TCP should ignore any datagram addressed to a broadcast or multicast address [Karn].

o Section 4.2.? SYN Overload
Agreed: it is OK for a TCP to indicate overload by sending a RST in response to a SYN. However, it would be worthwhile to follow Charlie Lynn's suggestion of a text error message in a RST segment. An RFC is needed.

SMTP Section 5.1.2.1 VRFY

Agreed: there needs to be a new 4xx response defined for VRFY when it cannot get an answer (e.g., because domain lookup fails) [Barns].

TELNET Section 5.4.2.* Status Option

Agreed: SHOULD implement the Telnet Status option.

TFTP Section 5.3.* Broadcast requests

Agreed: TFTP SHOULD ignore transfer requests sent to a broadcast address.

BOOTING

Suggested: RFC should contain separate discussions of dynamic configuration and of booting [Perkins].

Agreed: BOOTP should be recommended, since it provides the most general solution to dynamic configuration, and since it works through gateways. However, the RFC ought also review the various partial solutions to dynamic configuration:

- ICMP Information Request (=> Network number),
- RARP (=> entire IP address),
- ICMP Address Mask (=> Address mask).

BOOTP encompasses all of these and can also provide a list of default gateways.

ACTION: Write text about RARP: Melohn.

However, BOOTP is not sufficiently general to specify the configuration of all interfaces on a multihomed host. In this case, a host must either use BOOTP separately on each interface, or configure one interface using BOOTP and then access a file to configure the other interfaces.

Agreed: application layer configuration information will be taken from file(s), not obtained dynamically.

Agreed: there is a need for an IETF working group to create a general solution to the problems of dynamic configuration and booting, including the dynamic assignment of IP addresses.
HOST REQUIREMENTS RFC

- Group Effort
 - 19 active contributors from 15 org's
 - 7 from vendors,
 - 12 univ, govt agency, res labs

- Intensive Effort
 - 5 meetings in 8 months

- Comprehensive -- all major protocols

- Explicit and detailed
OBJECTIVES:

- Define requirements
- Point to essential documentation
- Correct/update original documents
- Fill gaps in specifications
- Limit choices
- Document known solutions to recurring issues
Chapter 6
DNS Mgt BOOTING

Chapter 5
SMTP FTP TFTP TELNET

Chapter 4
TCP UDP

Chapter 3
IP ICMP

Chapter 2 & RFC-1009
ARP
HOST REQUIREMENTS RFC

- Requirements ...
 - "MUST", "REQUIRED"

- Recommendations ...
 - "SHOULD", "RECOMMENDED"

- Options --
 - "MAY", "OPTIONAL"
HOST CONFIGURATION

- IDEAL: Automagic
- REALITY: Not even close !!

- Require extensive configurability, but defaults will ease the pain.

- Many parameters must be adjustable --
 - Depend upon environment
 - Administrative requirements
 - Wizards are unsure
 - Interoperate with past mistakes
SOME HOST ISSUES

• Type-of-Service
 - To break deadlock, make it real
 - Host must implement mechanism
 - Recommended values in "Assigned Numbers" RFC

• Maximum Segment Size / Eff. MTU
 - Document current heuristic
 - Initiate experimentation with Mogul-Kent MTU-Discovery Option
 - [IP-level reliable delivery mechanism?]

RFC-1063
• Gateway Discovery
 - Static Configuration
 - Dynamic Configuration (BOOTP)
 - ICMP "Gateway Discovery" Messages
 ["Blew" the RFC]

• Dead-Gateway Detection

• Link-Level Advice (-)
 From:
 • ARPANET/MILNET
 • Token Ring
 • Ethernet ???
Higher-level Advice(?)
From:
- TCP
- NFS (?)
- DNS

Gateways broadcast ICMP "up-gateways" msg -drafted RFC -currently dead
"PING" ACTIVE GATEWAYS
- SCALES BADLY

TIMEOUT ROUTE-CACHE ENTRIES
- SCALES BADLY (or worse)

"WIRETAP" GATEWAY IGP
- ARCHITECTURALLY UNSOUND
Host: venera.isi.edu
Path: pub/ietf-hosts.rfc.txt

Mailing list: ietf-hosts-request @ nsc.nsf.net
Interconnectivity

Guy Almes
Rice University
Why? Current issues:

- EGP can't support what must happen without "transient" loops.

 Multiple backbones
 peer<->peer connections

- ORWG won't be ready for "a while"

- Soon over 1000 nets

Elegance is not the major issue

Can we use EGP3?
OTHER NEAR-TERM SMALL DESIRES

- MORE INFORMATION FOR MORE DECISION-MAKING BY MID-LEVELS.

- MAKE WHAT IS NOW IMPLICIT EXPLICIT, IN A PROTOCOL

- MORE INFORMATION FOR BOBON-HUNTING

~~~

GENERALLY, INCREASE KNOWLEDGE OF WHERE ROUTING INFORMATION CAME FROM; DON'T TRY TO BUILD LOOP-FREE PROTOCOL.

YES, WE CAN USE EGPR3.

GOALS: (1) FINISH EGPR3 CHANGES

(2) START ANOTHER COMPANION RFC, RECOMMENDATIONS AND WARNINGS, NORMATIVE USE IN INTER-AS ROUTING.

TRY TO MAKE IT GENERAL.
ADD "PREVIOUS AS" TO POLL/UPDATE

TABLE ENTRIES BY NET, NEXT GW, PREV AS

ALLOWS FORWARDING OF EGP INFORMATION ONE MORE HOP SAFELY.

WELL, WHY NOT ADD SOME MORE?

VARIABLE-LENGTH LIST OF ASs ORIGINATING AS PREV-PREV-AS

WOULD YOU REALLY USE IT?
WHAT TO DO WHEN CAN'T RESTRICT TO THREE AS HOPS?

WHEN THERE IS NO OTHER CHOICE?
WITH STRONG CAVEATS,
1. ADD "AS COUNT" = TOTAL # OF ASs ROUTING INFO HAS PASSED THROUGH.
MUST AVOID LOOPS!
RESTRICITION: IF INFO GOES DOWN, CAN NEVER GO UP AGAIN.
2. "THE REKHTER BIT": DIRECTION.

4. LATERAL AS COUNT = # OF SUCCESSIVE PEER BOUNDARIES CROSSED.

5. ENCODE ASSIGNED POSITION IN HIERARCHY.
WHAT ABOUT METRICS?

- CURRENTLY EGP METRIC NOT USED (MUCH)

- ? USEFULNESS OF
  
  - OLD EGP METRIC - ASSIGN MEANINGS?
  - AS COUNT AS METRIC?
  - PRIMARY/SECONDARY INDICATOR?
    REAL USE NOT CLEAR.

WILL PROBABLY LEAVE SPACE FOR MULTIPLE METRIC TYPES/VALUES.
IGP (BBP) REQUIREMENTS

WILL HAVE

NEIGHBOR'S AS# ✓
IP ADDRESS

YOUR OWN —

NEXT GW

PREVIOUS AS

AS COUNT ✓

LATERAL COUNT ✓

DIRECTION BIT ✓

CAN PACK THESE INTO 24 BITS,
IF NECESSARY. WE'LL TALK.
Another word about E6P3

Level 0
Level 1
Level 2

down bit — once down, set lateral bit

\[
\begin{array}{cccc}
0 & \rightarrow & 1 & \rightarrow \\
A & \rightarrow & B & \rightarrow & C \\
\end{array}
\]

Last move

metrics — Probably not

primary/secondary/tertiary
Do not propagate
information fields?

\[
\begin{array}{cccc}
\text{type} & \text{SRC} & \text{??} & \text{prev AS} \\
4 & 1 & 12.8 & \text{per net} \\
\end{array}
\]

need an explicit down
Internet MIB

Craig Partridge
BBN

[no report/slides provided]
NSFnet/Reg Monitoring
JOMAAN

Susan Hares
Merit, Inc.
I. A collection of maps was distributed to all attendees. An effort to collect all kinds of maps will be made by Sue Hares.

   A. Maps of campuses, regionals, consortia, backbones should be sent in Postscript format to Sue Hares.

II. It was pointed out that On-line databases are kept at nis.nsf.net. Information such as Routing configurations are available.

III. Major discussion took place on the backup announcement of networks behind the regionals.

   A. Some major points:

      1. routing metric is interpreted *locally* by the NSS.
      2. multiple EGP peers can talk to one NSS with the same AS#.
      3. although the previous point is true, it was stressed that it is easier to manage the NSS when every peer has a unique AS#.
      4. every peer of an NSS should announce the shared net.
      5. NSFNET NOC needs one contact point within an AS#. Makes dealing with problems easier.

   B. Sue Hares discussed a "Cold Backup" strategy:

      1. configure two EGP neighbors.
      2. set egpmaxacquire to one.
      3. you would then peer with one at a time, trying the other only if you lost the first neighbor.
      4. must be careful with this because once your first neighbor came back up, you would not switch back to it until your second neighbor goes down. Sue Hares can configure this for your site if you wish. Contact her directly.

   C. Notification and confirmation of backup sites.
1. When adding new nets or when changing an additional network configuration, the NSFNET routing coordinator will make an effort to confirm the change with all parties involved. For example, checking with the primary announcer of a network before adding a secondary announcer for the same network.

2. The NSFNET routing coordinator will send out a mail message to NSFNET-SITE-PEOPLE notifying them of recent changes to the routing configurations. This message may be daily or as needed.

IV. SGMP/SNMP/CMOT based tools.

[ed. note: heavily involved in this discussion, notes are a bit scarce]

A. There are no CMOT based tools.

B. Shall we share SGMP sessions?

1. Some groups expressed concerns about the security of having one global SGMP session.

2. Concerns were expressed by many people regarding the changing of a global SGMP session every two weeks.

3. Agreed that it would be beneficial to all regionals and the NSFNET backbone to share SGMP information.

4. A read-only session called "monitor" should be added to all regional and NSFNET gateways by Friday, October 28, 1988. Progress on getting the sessions configured should be sent to Sue Hares and she will post a status report to NSFNET-SITE-PEOPLE.

5. It was suggested that people read Guy Almes's paper. It is available on the NIS machine. The NOC will post where it is located.

6. The common SGMP session must be considered private. Only the regional NOCs should be made aware of it. The session name will remain the same until there is some pressing need to change it.
C. There was loose consensus that problems between regionals should be hashed out by the concerned parties. The NSFNet backbone people would get involved in the event of a stand-still at solving the problem or in the case of an actual NSFNET backbone problem. Sharing SGMP information would make it a bit easier to pin-point the problem without NSFNET being the middle man.

D. Concern was expressed by certain regionals about lack of manpower in tracking down certain problems mentioned in the previous section without the help of NSFNET. At this junction, it was said that NSFNET would try and help.

E. Sue Hares of NSFNET will compile a list of available SGMP/SNMP tools. This will include vendors supporting SGMP/SNMP as well as public domain stuff. If you know of anything out there, please let her know.

V. Other Trouble-shooting tools.

A. Some other tools in detecting network problems were brought up. They were as follows:

1. Ping with record route.
   a. doesn't show TTL exceeded.
   b. will crash Ultrix.

   a. using TTL exceeded messages to trace the source of a route.

3. Ken Loewe's PC monitor program.

VI. Summary of Action Items.

A. Get your Postscript Maps to Sue Hares.

B. Make sure you are announcing the shared network to your NSS.

C. NSFNET routing coordinator should mail out messages to NSFNET-SITE-PEOPLE regarding routing changes.
D. Add an SGMP session called "monitor" to your regional gateways by October 28, 1988 and notify Sue Hares. She will then send out a status report to NSFNET-SITE-PEOPLE.

E. NSFNET NOC should post where Guy Almes's paper is located on nis.nsf.net.

F. Sue Hares will compile a list of available SGMP/SNMP tools.

(Notes by Mark Fedor of Nysernet. A big thank-you to Mark for a fine job... Sue Hares)

Slides Attached
Purpose

- Discuss how to find problems in the next hop network
- Create list of tools which can solve these problems
- Create a list of routing topology maps of regional networks
Agenda

1.) Introduction

2.) Routing Topology
   Maps and Agreements

3.) Tools from Standards
   SGMP/SNMP/CMOT/MIB

4.) Other Tools

5.) Methods
Methods

finding problems
in the next hop network
can use two methods:

- Verify not your end, and then
call next hop network (NSFNET)
who calls 2nd hop

- Debug via common tools whole
path
Methods

- Complete list of contacts for campus, mid-level networks put on-line at NSFNET

ongoing process
Tools

- Common SGMP sessions between NSFNET and regional networks

- SNMP once NSFNET supports SNMP

- Document on support of SGMP/SNMP in gateways and NSFNET

- Document on viewing tools for SGMP/SNMP
Other Tools

- Repository for tools at NSFNET IS machine (shareware status)

- List of Tools on NSFNET IS machine
MAPS

- On-Line Maps in simple postscript form on IS machine for campus, mid-level, and national networks

- Hard copy Maps collected too
Open SPF-based IGP

Mike Petry
University of Maryland

John Moy
Proteon
Open SPF-Based IGP WG Report
Reported by Mike Petry
17-19 Oct 1988
Ann Arbor, MI

A meeting was held to review and make comments on the draft specification of the OSPFIGP protocol written by John Moy. The most outstanding changes that were made were:

1) An encryption type field and fixing the size of the encryption field. I was decided that this field would be used to validate the message using an out of band encryption method that was determined by the type field. This relieved the requirement to have a large or variable field set aside for things like large keys. Something like a cryptographic checksum of the packet was deemed more inline with the needs.

2) 32bit network mask. A full 32bit mask was allocated as a network mask. This allowed a more consistent determination of host routes vs. subnet routes vs network routes.

3) TOS - Some bit field adjustment were made so the TOS bits were easier to deal with. Including the precedence bits in this field is being considered.

4) The inclusion of a backup designated router, which was included in this draft, was explained.

A discussion of routing table representation was led by Van Jacobson. Van gave some insight on the merits of using Patricia Trees for compact routing table lookups.

Group Status

The OSPFIGP Requirements document remains completed. There has been little no changes to it since early spring 88.

The protocol specifications document has gone through what is hoped the last set of cosmetic changes. A few bits slid around, but no changes in philosophy were made.

The latest revision, in PostScript form, were made available via anonymous ftp from mank.proteon.com late in Dec. The packet formats should now be chiseled in stone.

There are three implementation of this protocol that are being worked on.

1) MIT - for the MIT C gateway
2) Proteon - for the Proteon router
3) UMD - for 4BSD based systems

There is considerable collaboration between UMD and Proteon at this time. In fact, UMD has dedicated a person to this task full time for the last five months. (Rob Colton) The resultant UMD code will become public domain.
A common set of C header definition has been created that should aid in future implementations.

Here is a rough update of the UMD implementation:

- Code design and approximately a third of the OSPFIGP implementation has been completed. Currently finishing the SPF algorithm (which will include the new updates for the AS external and summary link updates) and the receive packet routines. We expect to have a version by the April IETF that has been tested on a few local UMD machines and with the NeST simulation tool.

Because of timing problems, the OSPFIGP group has not planned to meet at the Jan IETF. Instead we are trying to get the NASA video conf system for the end of Feb.

Slides Attached
At the Oct IETF Meeting:

The draft specification of the OSPFIGP protocol written by John Moy was reviewed. The following modifications were made to his specification:

1) An encryption type field and fixing the size of the encryption field. It was decided that this field would be used to validate the message using an out of band encryption method that was determined by the type field. This relieved the requirement to have a large or variable field set aside for things like large keys. Something like a cryptographic checksum of the packet was deemed more inline with the needs.

2) 32bit network mask. A full 32bit mask was allocated as a network mask. This allowed a more consistent determination of host routes vs subnet routes vs network routes.

3) TOS - Some bit field adjustment were made so the TOS bits were easier to deal with. Including the precedence bits in this field is being considered.

4) The inclusion of a backup designated router, which was included in this draft, was explained.

The protocol specifications document has gone through what is hoped the last set of cosmetic changes. A few bits slid around, but no changes in philosophy were made.

The latest revision, in PostScript form, were made available via anonymous ftp from mank.proteon.com late in Dec. The packet formats should now be chiseled in stone.

There are three implementations of this protocol being worked on.

1) MIT - for the MIT C gateway
2) Proteon - for the Proteon router
3) UMD - for 4BSD based systems

There is considerable collaboration between UMD and Proteon at this time. In fact, UMD has dedicated a person to this task full time for the last five months. The resultant UMD code will become public domain.

A common set of C header definition has been created that should aid in future implementations.

Here is a rough update of the UMD implementation:

Code design and approximately a third of the OSPFIGP implementation has been completed. Currently finishing the SPF algorithm (which will include the new updates for the AS external and summary link updates) and the receive packet routines. We expect to have a version by the April IETF that has been tested on a few local UMD machines and with the NeST simulation tool.
OSPF

- robust mask 32 bits
- backup designated router
- TOS + Precedence
- Multicast routes
- Multicast vs Broadcast
- Broadcast medium req. bidirectional
- Host routes supported by mask not bits
- Cryptographic type support
- ext info at untypd 32 bits

ospf16p@tronet.umd.edu
ospf16p-request
Open INOC

Jeff Case
UTK

[did not meet at Ann Arbor]
Open Systems Routing

Marianne Lepp
BBN
Open Routing Working Group

Charter: medium-term replacement of EGP

Requirements: 30E A 007
Now consider policy crucial

Current work

Strawman Architecture

- Describe Policies
- Distribute Database Info
- Compute Routes
- Forward Packets
Policy

Links can carry information
Attribute list
Limited flow of info/data
\textit{nakossis}: line up/down

Database

Hierarchical
Will not flood everything

Compute Routes
Have not addressed in detail
Link state
Local break/local fix
Forward packets

Source routing
Route set-up
OSI Interoperability

[did not meet at Ann Arbor]
PDN Routing

C-H Rokitansky
FernUniv Hagen
AGENDA OF THE 2nd PDN ROUTING
WORKING GROUP MEETING AT IETF, OCT 18th

- INTRODUCTION
- BACKGROUND INFORMATION
- DETAILED TECHNICAL DISCUSSION AND SPECIFICATION OF SHORT TERM GOALS (VAN-GATEWAYS, EGP3, ROUTING METRICS, ETC.)
- DISCUSSION OF MEDIUM TERM GOALS
- LONG TERM GOALS
- STATUS REPORT ON BBN-VAN-GATEWAY (BUTTERFLY REPLACEMENT, EGP, ETC.) BY (Mike Breccia, BBN)
- PROPOSAL FOR A MAPPING BETWEEN DNICs AND INTERNET/PDN-CLUSTER NETS - DISCUSSION (Carl-H. Rojiltinsky, Femina, Kopem)
- DISCUSSION OF HIERARCHICAL GATEWAY ALGORITHM FOR ROUTING AND NETWORK REACHABILITY INFORMATION EXCHANGE BETWEEN LEVEL 1 TO 4 GATEWAYS (Carl-H. Rojiltinsky)
- PROPOSAL OF AN X.121 ADDRESS RESOLUTION PROTOCOL (Mike Breccia)
- PROPOSAL OF AN CALL SETUP & REVERSE CHARGING PROTOCOL (CRC8) FOR X.25 CONNECTIONS (Carl-H. Rojiltinsky)
- TECHNICAL DISCUSSION
- PDN ROUTING PERFORMANCE TESTS
- ASSIGNMENT OF ACTION ITEMS
- MISCELLANEOUS
PDN Routing Working Group Status

Publication

- Internet Cluster Addressing Paper
  in Proceedings of 9th International Computer Communications Conference (ICCC '88)

Proposals:

- X.121 Address Resolution Protocol
- DNIC ↔ Internet PDN-Cluster Network Mapping
- Hierarchical Gateway Algorithms for PDN-Cluster
- Call Setup & Charging Deterministic Protocol (SCDP)
**DNIC Assignment**

<table>
<thead>
<tr>
<th>Zone</th>
<th>Area</th>
<th>DNICs assigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Europe</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>N. America</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>Asia</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>Pacific</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Africa</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>S. America</td>
<td>44</td>
</tr>
</tbody>
</table>

\[
\text{Total} = 200
\]
## Internet/PDN-Cluster Mapping

<table>
<thead>
<tr>
<th>Reserve</th>
<th>Hemisphere</th>
<th>PDN-Cluster Networks</th>
<th>Net MSB.</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>EAST</td>
<td>190.001 - 190.127</td>
<td>0000-0111</td>
</tr>
<tr>
<td>127</td>
<td>WEST</td>
<td>190.128 - 190.254</td>
<td>1000-1111</td>
</tr>
<tr>
<td>95</td>
<td>EAST</td>
<td>191.001 - 191.095</td>
<td>0000-0101</td>
</tr>
<tr>
<td>32</td>
<td>EAST</td>
<td>191.096 - 191.127</td>
<td>0110-0111</td>
</tr>
<tr>
<td>31</td>
<td>WEST</td>
<td>191.224 - 191.254</td>
<td>1110-1111</td>
</tr>
<tr>
<td>96</td>
<td>WEST</td>
<td>191.128 - 191.223</td>
<td>1000-1101</td>
</tr>
<tr>
<td>508</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**PDN-Cluster Mask:**

```
1111110000000000 0....0 <254.0.0.0>
```

**PDN-West Mask:**

```
1111110100000000 0....0 <254.128.0.0>
```

```
<table>
<thead>
<tr>
<th>WEST</th>
<th>EAST</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 7 3</td>
<td>2 4 5</td>
</tr>
</tbody>
</table>
```
HIERARCHICAL GATEWAY ALGORITHMS FOR PDN-CLUSTER

<table>
<thead>
<tr>
<th>Level</th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ZONE-GW</td>
</tr>
<tr>
<td>3</td>
<td>COUNTRY-GW</td>
</tr>
<tr>
<td>2</td>
<td>DATA NETWORK-GW</td>
</tr>
<tr>
<td>1</td>
<td>VAN-GW</td>
</tr>
</tbody>
</table>

![Diagram of PDN-Cluster with zones and countries]
CALL SETUP & REVERSE CHARGING PROTOCOL (CRCP)
ACCEPT
PASSIVE
CALL

e.g. FEU-VAN-GW ←→

call
PASSIVE

←→ e.g. BBN-VAN-GW
CALL SETUP & REVERSE CHARGING PROTOCOL (CRCP)

**Simplified State Diagram**

**States:**
- IDLE
- REJECT
- CALL REJECTED
- CALL ACCEPTED
- CALL SETUP
- CONNECTED
- CLOSE
- REFUSE
- CALL ACTIVE
- CALL PASSIVE
- CALL SETUP REQUEST

**Transitions:**
- IDLE to CALL ACCEPTED
- IDLE to CALL REJECTED
- CALL ACCEPTED to CONNECTED
- CALL REJECTED to REJECT
- CALL SETUP to CALL SETUP REQUEST
- CONNECTED to CLOSE
- CLOSE to CALL ACTIVE
- CALL ACTIVE to CALL ACTIVE
- CALL PASSIVE to CLEAR
- CLEAR to REFUSE

**Actions:**
- INCOMING CALL (User Data Field: SRC, DST, ACTIVE/PASSIVE)
- TRANSMIT PACKET REQUEST
- ACCEPT PASSIVE CALL
- ACCEPT ACTIVE CALL
- CALL SETUP
- CALL REJECTED
- CALL ACCEPTED
- CHECK ACCEPTANCE
- CHECK SETUP
- CALL
- REFUSE
- CALL ACTIVE
- CALL PASSIVE
- RECEIVE AND TRANSMIT FILTERED DATA
- CLEAR
- CONNECTED

**Notes:**
- e.g. BBN-VAN-GW
- e.g. FEU-VAN-GW

**Authors:**
- C.M. Rohitansky
- Fernando Rayna
PDN Routing Working Group Papers

- X.121 Address Resolution Protocol - IDEA (Jan '89)

- Mapping Between DNICS and PDN-Cluster Networks - IDEA (Jan '89)

- Call Setup & Charging Determination Protocol (SCDP) - IDEA (Jan/Feb '89)

- Hierarchical Gateway Algorithms and Network Reachability Information Exchange for PDN-Cluster - IDEA (Jan/Feb '89 ?)

PDN-Cluster Functionality Tests

Between USA and Europe, expected to start Dec '88
Performance and CC

Allison Mankin
MITRE
Attendees: Roger Beeman (Boeing), Art Berggreen (ACC), Scott Brim (Cornell), Steve Casner (USC/ISI), Bilal Chinoy (MERIT), Mike Collins (LLNL/ESnet), Gene Hastings (PSC), Van Jacobson (LBL), Paul Love (SDSC), Ken Lowe (Univ. of Washington), Allison Mankin (MITRE), Matt Mathis (PSC), Philippe Park (BBN), Paul Parker (CMU), Guru Parulkar (Washington Univ.), K.K. Ramakrishnan (DEC), Gladys Reichlen (MITRE), Robert Reschly (BRL), Bruce Schofield (DCEC), Geof Stone (Network Systems Corp.), Paul Ticknor (NASA/NAS), Claudio Topolcic (BBN), Steve Wolff (NSF), Jessica Yu (MERIT).

The Performance Working Group met on Tuesday morning. Currently this group has a paper in progress which addresses Internet performance for TCP and gateways. During an off-line discussion with Bob Braden, from the Host Requirements WG, it was recommended that the Performance WG produce a separate document (as a Draft RFC) specifying TCP congestion control methods, in particular Slow-start. This document would be an adjunct to the Host Requirements RFC. The WG agreed that this was a good approach. Therefore a draft of this new paper will be put together, and distributed to the WG via email for comment, before the January meeting.

Claudio Topolcic from the ST/Connection-Oriented IP WG briefed us on their group's direction. They are working on two documents: a modification to the current ST specification and a connection-oriented Internet protocol requirements document. In the requirements document they will be defining performance guarantees needed from the network for successful use of applications such as video-conferencing, in addition to the common ones (FTP etc.). Our two groups will cooperate.

In response to the Host Requirements RFC reiterating the definition of IP TTL as a time, not a hop count, the Performance WG discussed several issues: TTL as a time does not give enough range (that is, usual values of TTL, such as 30 seconds, could be quite unsafe with the current range of Internet transit times, if most gateways suddenly treated the TTL as a time. However, TCP not wanting to wrap sequence numbers while a segment is in the network requires the bounded lifetime implied by TTL as a time. A suggestion for an alternative that met some favor was to have gateway IP bound packet lifetime on the queue. The TTL maximum times the queue stay bound would have to be within the TCP Maximum Segment Lifetime.

Van Jacobson talked to us about his recent activities. The report in these minutes will be sketchy, since we hope to hear about these projects in detail in future IETF plenary presentations:
Gateway congestion control experiments: reserving bandwidth for packet video through gateways, in conjunction with an ARMA congestion predictor. The set-up is done with options and a special TOS is used during the lifetime of the video. Good success so far with reserving 250Kb/sec bandwidth for each video flow and still running TCP connections fairly.

Analytical modelling: he has a tractable model of transport and gateway with one gateway. It's not tractable with a larger Internet. The results so far support TCP window flow control (versus rate-based control) -- another reference on this was Aurel Lazar (Columbia Univ. Telecommunications).

Stimulated by a request from Phill Gross (visiting), we had a discussion of source quench, with the following as a brief summary of the various arguments about its effect:

1. SQ is not good, but not really bad except it takes bandwidth at a time when you really don't want to do that.

2. SQ has an underlying model—that congestion problems are being by a small number of hosts. This underlying model is not the same as the reality of transit gateways: confluences from a range of hosts at varying distances from the gateway.

3. Why not assume source quench is an early indication of packet drop? Because gateways are not held to using source quench to mean this. A connection can safely interpret source quench as meaning there is some congestion, but not what degree and not whether caused by itself; in LAN experiments, the SQ went consistently to the wrong host, i.e. the host with the smallest windows and the most random sends. Slow-start therefore does a restart in response to SQ, but does not change the ssthresh, the size of the window above which further opening is done slowly.

4. SQ is essentially broken — even if you can guarantee you quench the right source, it is still not the right mechanism. Slow-start has a conservative handling of SQ, but it still has to be considered what harm it may do: synchronization effects and effects on control loops by taking action at a rate less than the round-trip time are two possibilities.

The group discussed whether it would make sense to produce a short 'kill SQ' RFC—consensus was yes. Approach: a collection of existing data to support the con arguments of the discussion. Van and Allison have experimental evidence to contribute to the paper.

The remaining hour of the meeting was taken up with a discussion of gateway performance and the extent to which gateways, as they exist now, can support performance guarantees. The
unsolved problem of how gateways can accurately signal bandwidth changes to TCP (and similarly behaved traffic) is a big obstacle.

Next Meeting:

At the next IETF meeting, the group will discuss a draft of the TCP document (coming). The agenda will also include new information gathering for the second document on gateway performance.
Pt-Pt Protocol

Drew Perkins
CMU
Point-to-Point Protocol WP Report
Reported by Drew Perkins
17-19 Oct 1988
Ann Arbor, MI

The PPP WG met at the IETF meeting in Ann Arbor, Michigan during the morning of Tuesday, October 18, 1988 and also briefly during the afternoon of Wednesday, October 19, 1988.

Attendees on Tuesday were Drew Perkins (CMU), Ron Broersma (NOSC), Michael Petry (UMD), Bob Gilligan (SUN), Mark Lottor (SRI-NIC), Terry Bradley (Wellfleet), Becca Nitzan (NMFEC), Milo Medin (NASA), John Moy (Proteon), Russ Hobby (UC Davis), Philip Prindeville (McGill), Rick Boivie (IBM), Jessica Yu (Merit), Cal Thixton (NeXT) and Phil Karn (Bellcore). Russ Hobby took minutes.

The first item on the agenda was a discussion of the "Point-to-Point Protocol Requirements" document. Three changes were suggested:

1. A section should be added discussing hardware vs. software requirements.
2. A definition of "fragment" should be added.
3. The section on "Sequencing" should mention that it should not be ruled out. There may be times when it is desired, such as for other protocols and possibly when the reliability bit is set in IP datagrams.

The rest of the meeting was spent discussing proposals for the protocol.

1. Discussion on liveness/up-down capabilities
   a. The protocol should make sure to use hardware status (carrier detect, etc) when possible.
   b. The use of the liveness protocol should be negotiated before line is brought up.
   c. Liveness protocol should compare frame counts sent to frame count received at other end for line line quality. Negotiate line quality (error rate) at which to take down and bring up the line.

2. Discussion on error detection/correction
   a. The protocol should send CRCs in ALL cases, other end does not necessarily need to check them if it does not want error detection (i.e. you want to pass through data even if it is know to be bad, may be the case in voice or video).
b. There was much discussion concerning error correction. Conclusion: error correction not used by default but may be enabled when it is necessary. Suggest using LAPB.

3. Discussion on async protocol

a. We discussed two framing protocols for async links: the framing protocol used by Rick Adams' SLIP, and the Proposed Draft International Standard ISO 3309 Revised (E). The DIS ISO 3309 defines how to do HDLC framing for "Start/stop transmission", aka async links. Since backward-compatibility with SLIP is not one of our goals (SLIP provides so little that it doesn't make sense), we decided that we may as well abandon SLIP and standardize on ISO 3309 HDLC. This should work out well since HDLC is more likely to be supported in the future by modem and IC manufactures. It also clears up the confusion about back compatibility quite nicely (it won't work).

4. Discussion on sync protocol

a. No one questioned that the "obvious" thing to do is use HDLC framing, with addresses 1 and 3 and UI in the control field. This is very nice because full LAPB can be run in parallel simultaneously if desired.

5. Discussion on packet format

a. We decided to use our own numbering system for the type field with standard values independent of MAC layer (async/sync/etc). Conflicting goals of even packet boundaries for high-speed links and high link efficiency for low-speed links led to agreement on an ISO'ish protocol (reminiscent of HDLC addresses). All protocol types values can be represented in 15 bits or less. For the foreseeable future it is likely that there will be very few protocols, probably less than 32. Therefore, the type field will normally be a single octet for async links, but will be extended to two octets when necessary (protocol type exceeds 1 octet). On sync links, the two octet representation will be used at all times. This is accomplished by using the MSB of the first octet transmitted/received to indicate a one/two octet type field. When the MSB is one, the field is 16 bits and remaining 15 bits are the type value. When the first bit is zero, the field is 8 bits and the remaining 7 bits are the type value.
The initial values will be as follows:

```
zero - reserved
1 - link control
2 - IP
3 - ISO
4 - XNS
5 - MAC bridge
6 - DECNET
32767 - reserved (all 1's)
```

6. Discussion on Link Control Packets
   a. Line Reset
   b. Line going down
   c. Others

7. Discussion on Option Negotiation Packets
   a. One item will be negotiated per packet, but packet may have multiple parts (ie: a list of addresses)
   b. Option Packet Fields
      Option type - 16 bits
      Length - 16 bits
      Data
   c. Items considered for negotiation
      | ITEM                        | DEFAULT |
      |-----------------------------|--------|
      | MTU                         | 576    |
      | Compression                 | Off    |
      | Liveness (Up/Down)          | Off    |
      | LAPB (error correction)     | Off    |
      | Addresses                   | None   |
      | Authentication              | None   |
      | Encryption                  | Off    |
      | Character mapping           | Off    |
   d. General strategy for bringing up line.
      Start dumb, learn smarts. Start with basic communications and negotiate other capabilities. This ensures compatibility at start.

8. Discussion on problem of loopback detection and Master/Slave establishment. Protocol: Send random number (64 bit) challenge. Get response. Compare. If response is the same number, may be loopback, try new random number. If get back same number after N tries, assume loopback. Possible sources for random number:

```
MAC address
Machine serial number
Non-volatile memory configuration
Low bits of clock
```
Result of comparison determines master and slave. Higher number is master. For HDLC, higher number is DCE (address 1), lower number is DTE (address 3).
ST and CO-IP

Claudio Topolcic
BBN
ST and connection oriented internet protocol
- Two parallel tracks
  - ST specification
  - Long term connection oriented internet protocol issues
- ST specification
  - Identified a number of issues
  - Did not resolve any
  - Will meet by multimedia conferences
  - Will exchange mail
  - Intend to have a good draft by next IETF
  - Implement after
- Connection oriented internet protocol
  - Progress understanding what we mean
- Plan
  - Identify requirements
  - Specify options
  - Possibly test some options on ST
  - Incorporate results from Inter Domain Routing
  - Write a specification
- Requirements document
  - Driven by applications
  - Req's of protocol
  - Req's of networks
- Have an outline
- Have writing assignments
- Will continue by E-mail
- Plan to have a draft by next IETF
TELNET Linemode

Dave Borman
Cray
TELNET Line Mode

- Reviewed & modified draft #2 of IDEA 16
- Draft #3, this meetings changes, will be very close to RFC
- Get new draft out for 1-2 months review, then submit as an RFC
User Services

Karen L. Bowers
NRI

[newly formed; will meet 18-20 Jan 89]
6. NETWORK STATUS BRIEFINGS AND TECHNICAL PRESENTATIONS
NSFnet Report

Part I

Hans-Werner Braun
Merit, Inc.
(University of Michigan)
Merit Staff Organization
including NSFNET
NSFNET Backbone Networks
Directly reachable via mid-level network
Days since 1 July 1988
September statistics
Overall NSFNET backbone

Inbound packets

Day

5 10 15 20 25 30
October statistics
Overall NSFNET backbone

Inbound packets

Day
NSFNET Traffic—September 1988
Total number of packets in and out per NSS
NSFNET Traffic—Weekly packet counts 1988

![Bar chart showing weekly packet counts for 1988 for NSFNET Information Services.]
NSFNET Traffic—September 1988
Daily traffic in and out
for all NSSs

*Data for 9/14/88 under-reported due
to data collection problems.
NSFNET Traffic—1987-1988

Old Backbone (Aug. 87-Jun. 88)
New Backbone (Aug.-Sept. 88)

Number of packets

Note: statistics taken from ethernet interfaces on
old backbone, from token ring interface for new backbone

Marl/NSFNET Information Services
NSFnet Report

Part II

J.E. Drescher
IBM Corporation
SOME IBM PEOPLE
RESEARCH
YORKTOWN

BARRY APPELMAN
NGUYEN HIEN
MATT KORN
- JACOB REKHTER
- GEOFF CARPENTER
- FRED ROBBINS
- BILL RUBIN
- JED KAPLAN

- WOLFGANG SEGmüLLER
- BERT WIjNEN
- MILTON LILIE

JORDAN BECKER

TECHNICAL COMPUTING SYSTEMS

ANN ARBOR
MILFORD
GAITHERSBURG

JACK DRESCHER
WALTER WIEBE
PAUL BOSCO
TOM STIX

- JIM SHERIDAN
- RICK BOIVIE
- AL WATSON
- RICK UE BERROTH
- LOU STEINBERG
- BILL CROSTHWAIT
- MYRON HEPNER
- STEVE CAPORALE
- MIKE SABOL
- FRANK BARTUCCA
- MATHI PACKIAM
- TIM ROLFES
- SUE WANG

SKK 10/13/88
NETWORK MANAGEMENT OPPORTUNITY

WE CAN BECOME THE NATIONAL SHOWCASE

-- PUBLICITY
-- FACILITY
-- ATTITUDE
-- SKILLS
-- BASE PRODUCTS

WE CAN LEAD WAY IN AUTOMATING/SYNERGIZING PRODUCTS TO PROCESS

DIRECTION
NSFNET SHORT TERM FOLLOW-ON FUNCTION

• STIMULATED BY ACCEPTANCE/TRAFFIC GROWTH
  - AND POSITIVE USER RESPONSE

• INCREMENTAL DELIVERY: 4Q88 THRU 4Q89

• APPROXIMATELY 50 LINE ITEM CANDIDATES DEFINED
  - IBM HAS ASSIGNED INITIAL PRIORITIES, TARGET DATES
  - PARTNERS REVIEW/INPUT 10/20/88
  - TARGET TO CLOSE PLAN 11/01/88 (TIGHT)

NOTE: DOES NOT INCLUDE UPGRADE TO T₃

• FEATURES
  - PERFORMANCE/CAPACITY ENHANCEMENTS
  - MORE AUTOMATED CONTROL/ADJUSTMENT
  - ENHANCED NETWORK MANAGEMENT
  - ADVANCED PROTOCOLS e.g., SNMP, CMOT, EGP₃
  - STREAMLINED CONFIGURATION ITEMS

• SOME EARLY SPECIFICS
  - MIB INTERFACE TO NSS
  - X.25 ARPANET ADAPTOR
  - 3 COM ETHERNET ADAPTOR
  - RTIC IDNX DRIVER (T₁)
ARPANET/DDN Report

Marianne Lepp
BBN
ARPANET STATUS

Oct 18, 1988

Marianne Lepp
Path Through SAC To Be Disc. 8/1/88(77).

ARPANET 6-23-88 Topology
BSAT "trunk" is everything within dotted line
BSAT Lines

- Installed between RCC5 and ISI27
  DCEC and ISI27
  DCEC and SRI51
- Intended to replace transcontinental terrestrial trunks
- Network diameter reduced from 9 to 7 hops
- "Piggybacked" on Wideband Net
- Frequent outages caused by high and variable delay
- Improved by lengthening retransmission timer, increasing number of logical channels, and relaxing "line down" criterion
- Remaining outages caused by Wideband Net resets
## Arpanet Topology

### Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Aug 87</th>
<th>Feb 88</th>
<th>Jun 88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>45</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>Trunks</td>
<td>67</td>
<td>68</td>
<td>82</td>
</tr>
<tr>
<td>Trunks per Node</td>
<td>3.0</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Active Hosts</td>
<td>170</td>
<td>155</td>
<td>202</td>
</tr>
<tr>
<td>Hosts per Node</td>
<td>3.8</td>
<td>3.6</td>
<td>4.0</td>
</tr>
</tbody>
</table>
## Arpanet Performance

### Week Long Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Aug 87</th>
<th>Feb 88</th>
<th>Jun 88</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Traffic</td>
<td>229</td>
<td>325</td>
<td>320</td>
</tr>
<tr>
<td>Total Internode Throughput (KB/S)</td>
<td>300</td>
<td>332</td>
<td>336</td>
</tr>
</tbody>
</table>
## Arpanet Performance

### Peak Hour Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Aug 87</th>
<th>Feb 88</th>
<th>Jun 88</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Host Traffic</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Msg / Sec</strong></td>
<td>296</td>
<td>447</td>
<td>470</td>
</tr>
<tr>
<td><strong>Total Internode</strong></td>
<td>397</td>
<td>494</td>
<td>449</td>
</tr>
</tbody>
</table>
Packet Rate on ARPANET

<Diagram with a line graph showing the number of packets sent per day, with a peak around the middle of the year and a steady increase over time.

- Packets Sent
Packet Rate on ARPANET

Packets Sent
CPU Utilization of ARPANET Node 14 (CMU)
6-10 June 1988

CPU Utilization (%)

- Weeklong average
- Peak hour
CPU Utilization of ARPANET Node 14 (CMU)

Time (EDT) on 6 Jun 1988

- Average over 15-minute interval
- Range of 1-minute averages in 15-minute interval
CPU Utilization of ARPANET Node 27 (ISI27)

Time (EDT) on 6 Jun 1988

- average over 15-minute interval
- range of 1-minute averages in 15-minute interval
DDN Report: Transition of DDN Mailbridges
from LSI-11 to Butterfly Gateways

Michael Brescia
BBN Communications Corporation
TRANSITION OF DDN MAILBRIDGES FROM LSI-11 TO BUTTERFLY GATEWAYS

Michael Brescia

BBN Communications Corporation
SEQUENCE OF EVENTS

INSTALLATION AND TESTING

• Assign Sites and PSN Connections
• Deliver and Install Butterfly Mailbridge Systems
• Test Hardware Installation and Software Integration
• BETA Testing with Selected Sites
SEQUENCE OF EVENTS
TRANSACTION PLAN

- Prepare Mailbridge Transition Plan for Host and Gateways

- Design and Announce via "DDN Management Bulletin"
  - New Load Sharing Assignments
  - Schedule for Dropping Old Mailbridges

- Announce via EGP-PEOPLE Mailing List
  - New EGP Servers
  - Schedule for Dropping Old EGP Servers
SEQUENCE OF EVENTS
RETIREMENT OF LSI-11 MAILBRIDGES

- Remove Old Mailbridges from Service
- Remove Old EGP Servers
STATUS OF MAILBRIDGE TRANSITION

- Sites and Connections on Arpanet and Milnet Assigned
  - 3 on East Coast (DCEC, MITRE, BBN)
  - 3 on West Coast (AMES, ISI, LBL)

- July
  - Butterfly Mailbridge Hardware Installed

- August - Present
  - Software and Hardware Testing in Progress
  - Establishing Procedures with the Site Coordinators
  - Discovered EGP Problems
  - Examining Solutions
SCHEDULE FOR
REMAINING MAILBRIDGE TRANSITION

- November/December
  - Announce BETA Test

- And beyond
INTEROP 88 Network Report

Philip Almquist
Stanford University
The INTEROP 88 Network: Design, Problems, and Lessons Learned*

Philip Almquist

* WARNING: do not try this at home. Professional stunt driver required.
Introduction

- Large scale demonstration of TCP/IP Interoperability
  - 49 vendors
  - Approximately 250 hosts and gateways
  - Almost 2 miles of cabling
  - High-speed connections to ARPANet, MILNet, NSFNet, ...
- Standalone network for CMOT (NETMAN) demonstration
- Very successful
- Purposes of this talk
  - Inform
  - Stimulate IETF action
Description of the network

- Designed by Peter DeVries and myself
- Subnetted class B net
- Multiple media
  - Ethernet
  - Thin Ethernet
  - Ethernet over twisted pair
  - Ethernet over fiber
  - PRONet-80
  - IBM/802.5 token ring
  - SLIP
  - Packet radio
  - (also Hyperchannel, PRONet-10, T-1, and Ethernet over broadband in individual booths)
- Tree topology - no alternate routes
- Small subnets
- All backbone routers in NOC
- Built in 5 1/2 days by Peter, myself, 3 part-time technicians, and a horde of volunteers
**INTEROP 88**

Excelan 8-port Ethernet Fan-out unit

- cisco gw
- cisco gw
- cisco gw
- Proton gw

ProNET 80

Token Ring

T-1 link

IBM NSS

T-1 link

Proton gw (NASA Ames)

BARRNET

ARPANET

MILNET

**Show and Tel-Net Topology**

**Participating Vendors:**

- 3Com
- ACC
- Apple Computer
- Baymax Systems
- IBM Communications
- COMPUTERWORLD
- CMG
- Computer Network Technology
- Concurrent Computer
- Convergent Technologies
- cisco Systems
- DCA/SRI International
- DEC
- Eclipse
- Eon Systems
- Excelan/TVG/Kinetics
- FTP Software
- Halley Systems
- Hewlett-Packard
- Highland Software
- IBM/MCI/Merit/CMU
- Interactive Systems
- InterCon
- Interphase
- Leuchten Associates
- Mitre/Unisys (NetMan)
- Network General
- Network Research
- Network Solutions
- Network Systems
- Prentice-Hall
- Prime Computer
- Process Software
- Proteon
- Sirius Systems
- Spider Systems
- Sun Microsystems
- SynOptics Communications
- Syntax Systems/10Net
- Sytek
- Tandem Computers
- TCL
- TRW
- Ungermann-Bass
- UNIX World
- Vitalink Communications
- VXI Technologies/MIPS
- Wellfleet Communications
- Western Digital
- The Wolfhage Group
- Xypens
Cabling

• What we did
  • Cabling hung from ceiling
  • Intentionally very visible
  • Tranceivers reachable with a ladder

• Problems
  • Ran out of cable
  • T-1 didn’t want to work (of course!)
  • Too many people inside the wiring center
  • One booth on wrong subnet because vendor rewired it!
  • Mysterious temporary failure of one Ethernet segment on second day of show
  • The usual minor problems...
IP address assignment/host table creation

- What we did
  - We obtained a domain: ShowNet.COM
  - Vendors filled out host questionnaires
  - We assigned IP addresses and created a zone file
  - A program read the zone file to generate the IN-ADDR.ARPA zone files and a HOSTS.TXT

- Problems
  - Questionnaires were returned late and filled out incorrectly
  - No host table czar
  - Zone file inaccessible until T-1 came up
  - Some vendors required /etc/hosts format
Domain service

• What we did
  • 3 authoritative servers (two off-site)
  • Off-site servers set up as secondaries
  • Small TTL’s and refresh times

• Problems
  • Syntax errors in the master files
  • Little familiarity with domain software on primary
  • Miscommunication between the NIC and Wollongong
  • Root server update procedure failed
  • Primary not installed until the day before the show

Lessons
  • Make sure domain requests get honored well before you need them
  • Root server updates are probably not as robust as they should be
  • Hand-typed zone files require a syntax checker program
Network Management

• What we did
  • SUN running Wollongong/NYSERNet SNMP tools
  • Protocol analyzer
  • Smart Ethernet terminator

• Problems
  • pre-SNMP code on cisco routers the first day
  • bug in Proteon SNMP
  • SUN had incomplete/incorrect SNMP configuration files
  • Most segments didn’t have extra tranceivers for monitoring
  • NOC personnel unfamiliar with the particular management tools available

• Lessons
  • Network management tools are useless if they can’t be used quickly and easily when problems occur
Internet Protocol Police
Notice of Protocol Violation

<table>
<thead>
<tr>
<th>IP Address of Offender:</th>
<th>Domain Name of Offender:</th>
</tr>
</thead>
</table>

### Improper Configuration
- Wrong IP Address
- Wrong IP broadcast address
- Wrong Subnet Mask
  (or subnets not supported)
- Excessive Broadcasting
- ARPing for Broadcast Address
- Invalid Ethernet/Subnet address

### Protocol Violations
- Forwarding broadcast packets
- TCP response to broadcast
- ICMP response to broadcast
- Ignoring ICMP redirects
- Ignoring ICMP source quench
- Broadcast TCP packets
- TCP Keepalives
- TCP aborts on ICMP message while connected

### Warnings
- Disabling UDP checksums
- Dropping packets while resolving addresses
- Tinygram generation
- Improper round-trip-timing
- Lack of congestion-avoidance

Inspector: ____________________________ Date: / /
Internal routing

• What we planned
  • Use RIP throughout
  • Back doors were allowed only if not advertised

• What we actually did
  • Core routers sent all routes via RIP
  • Core routers believed RIP only from other core routers
  • Core routers had static routes to subnets behind non-core routers
  • Hosts and non-core routers to avoid RIP and use a static default route
  • Reasoning: possible bogus routes from misconfigured RIP-speakers

• Problems
  • Large and unnecessary RIP broadcasts (from NSFNet routes) caused problems for PC’s

• Lessons
  • Static routing is a b*tch
External routing

• What we did
  • T-1 between core Proteon and AMES ARPANet/MILNet gateway
  • static routing over T-1
  • Proteon advertised RIP default
  • static routes to cisco, Prime, SUN Cray, Bay Area Teleport
  • Explicit RIP routes for NSFNet routes through IBM's NSS

• Lessons
  • cisco routers ignore RIP default
External routing - NSFNet

- What we did
  - NSFNet NSS in IBM booth
  - Secondary NSFNet path through BARRNet
  - IBM "subnet" was a class C net so EGP could treat it differently
  - PC/RT in IBM booth EGP peered with NSS and distributed RIP routes on the class C net
  - cisco core gateway also EGP peered with the NSS and distributed RIP routes on the class B net
  - Result: routing policy decisions by IBM and the NOC were independent of each other
  - NOC policy decision: always believe NSF routes (except for one afternoon when the NSFNet T-1 was flapping)
• Problems
  • We started out the show running old cisco code without NSFNet fixes to EGP
  • The NOC policy decision somewhat controversial...
  • Black holes occurred due to bad mixtures of static routes and firewalls in some of the regionals

• Lessons
  • Because of firewalls, it is dangerous to add a network to NSFNet without informing the regional networks.
Disappointments

- Network took one day too long to build
- No time for interoperability testing
- Network management not set up
- No time for packet watching
- Vendors pretty much left to sink or swim on their own
- Network would have been more solid if it had run for a day before the show
Things I was particularly happy about

- It worked well enough...
- We got a tremendous amount of help from the Internet community
The reasons it all worked

Rick Boivie
Len Bosack
David Bridgham
Eric Brunner
Jeff Burgan
Myu Campbell
Mario Castro
Shelly DeVries
Steve Knowles
Susan Hares
Alex Latzko
Sandy Lerner
Milo Medin
Robert Michaels
Paul Mockapetris
Mike Moesler
Vince Raya
Sue Romano
Greg Satz
Mick Scully
Jim Shimoto
Mike St. Johns
James VanBokken
John Veizades

People who contributed to this talk

Peter DeVries
Milo Medin
Internet Protocols ("TCP/IP") for Amateur Radio

Phil Karn
Bell Communications Research
INTERNET PROTOCOLS ("TCP/IP") for AMATEUR RADIO

Phil Korn, KA9Q
Amateur Packet Radio Station

PC
SLIP RS-232
TNC
HDLC Audio
Transceiver
Packet Radio Frame

Flag | Dest | Src | Rptrs | CTL | PID | DATA | CRC | Flag
---   | ---   | --- | ----  | --- | ---  |      | --- | ---
IP Header | TCP Header | DATA

---
Packet Modem Developments

- **56 Kbps MSK (WA4DSY)**
  
  3 board kit from GRAPES (Atlanta)
  
  28 MHz IF to linear transverter

- **9600 bps FSK (G3RUH)**

- **9600 bps FSK (K9NG)**
  
  1 board kit
  
  Connects to FM voice radio
  
  Internal connections required

- **4800 bps (HAPN)**

- **1200 bps PSK (TAPR/JAMSAT)**

- **1200 bps PSK (G3RUH)**
  
  1 board kit
  
  Connects to SSB/FM radio (FO-12)
Problems

- Tinygrams
- Poor round trip timing algorithms
- Protocol violations, esp. on retransmit
- Short giveup timers
- Telnet echo
- Keepalives
- Fragmentation
Fixes

- Nagle tinygram avoidance algorithm
- Jacobson, Karn RTT algorithms
  Believe the numbers you get - no arbitrary limits!
- Eliminate TCP giveup timers
  Application, *not* TCP, should abort
- Eliminate TCP keepalives
Solving the "Retransmission Ambiguity" Problem

- Ignore RTTs of retransmitted packets
- Clamp backoff after retransmission and increase until valid RTT obtained
Partial Fixes

- Telnet local echo
- Link level retransmission
  - Not a replacement for "doing it right" at the physical layer
- Link level (transparent) fragmentation
High Performance TCP Over An Ethernet

Van Jacobson
Lawrence Berkeley Labs
Costs (in time) to Send a Packet

“**Fixed**” (per-packet):

*Examples:*
  - Media acquisition time
  - Packet headers & trailers
  - Protocol processing
  - Device & interrupt service

“**Variable**” (per-byte):

*Examples:*
  - Bit time on wire
  - Copy to/from user space
  - Checksum data
The diagram illustrates the relationship between packet size (S), time to send a packet (T), and bandwidth (B). The equation shown is:

\[ T = F + VS \]

The bandwidth is defined as:

\[ \text{Bandwidth} \equiv \frac{\text{size}}{\text{time}} \]

From the equation above, the bandwidth formula is:

\[ B = \frac{S}{F + VS} \]

Another formula for bandwidth is:

\[ B = \frac{1}{V + F/S} \]
$\frac{1}{V}$ (Asymptotic Bandwidth)

Effective Bandwidth ($B$) vs Packet Size ($S$)

$S \gg \frac{F}{V}$

$S \ll \frac{F}{V}$
Sequence of Events: Sending One Packet
Sequence of Events: Pipelining
Ethernet Costs

- Fixed costs:
  - 24 byte IPG / Sync / CRC
  - 14 byte Ether header
  - 20 byte IP header
  - 20 byte TCP header
  - 78 bytes (\(= 62\) us)
  - \(\times 1.5\) (one ack per 2 data) \(93\) us / packet

- Variable Cost:
  - 10 Mbps \(0.8\) us / byte

\[
\frac{F}{V} = 116 \implies \text{want at least } 1160\text{ byte packets.}
\]

Max packet length is 1538 bytes.
\[
1538 - 78 = 1460\text{ bytes user data}
\]

max variable cost \(= 1460 \times 0.8 = 1168\) us

total cost for max length packet \(= 1261\) us

max efficiency \(= 1460 / 1577 = 93\)%
CPU / System Costs
(for 20MHz 68020 running 4BSD Unix)

• **Variable Costs (for 1460 byte packet):**

  *(limiting bandwidth is memory @ 130 ns/byte)*

  - User — System copy: 200 us
  - TCP Checksum: 185 us
  - LANCE bus use: 386 us

  \[771 \text{ us}\]

• **Fixed Costs:**

  - LANCE (Ethernet) driver: 100 us
  - TCP / IP / ARP protocols: 100 us
  - other OS functions: 240 us

  \[440 \text{ us}\]

  (syscall, sleep, wakeup, 3 interrupts)

  - Idle: 200 us

\[1411 \text{ us}\]
Sept. 88 TCP Throughput Tests

- Throughput on Wire (Mbits/sec)
- Task-to-task Data Throughput (KBytes/sec)
- Receiver Buffer Size (in packets)

20MHz 68020 w/AMD LANCE
Aug 88: New Network Code Xput Tests

Throughput (KB/sec) vs. Sender Buffer Size (in packets)
Aug 88: New Network Code Throughput Tests
(receiver buffer size fixed at 7 packets)
Aug 88: New Network Code Throughput Tests

(receiver buffer size fixed at 4 packets)
Aug 88: New Network Code Xput Tests

Max. Throughput (KB/sec) vs. 1/(Rcvr Buffer Size)
4BSD TCP “Header Prediction”

Identifying candidates (\(ti\) points to the incoming segment, \(tp\) points to the protocol control block).

Brute-force version:

```c
#define FLAGS (SYN|FIN|RST|URG|ACK)

if (tp->state == ESTABLISHED &&
    (ti->flags & FLAGS) == ACK &&
    ti->seq == tp->rcv_nxt &&
    ti->win == tp->snd_wnd &&
    tp->snd_nxt == tp->snd_max) {
```

Minimalist version:

```c
if ((ti->flags & FLAGS) == tp->pred_flags &&
    ti->seq == tp->rcv_nxt &&
    ti->win == tp->snd_wnd) {
```
“Receiver” processing: (i.e., data in the packet.) Make sure there’s no piggy-backed ack, no packets on the reassembly queue, and enough buffer space to take the data.

```c
if (ti->ack == tp->snd_una &&
    ti->len <= so->so_rcv.sb_cc)) {
    tp->rcv_nxt += ti->len;
    m->m_off += sizeof(struct tcpiphdr);
    m->m_len -= sizeof(struct tcpiphdr);
    sbappend(&so->so_rcv, m);
    sorwakeup(so);
    tp->t_flags |= TF_DELACK;
    return;
}
```
“Sender” processing: (i.e., no data in the packet.) Make sure something is acked, the ack is for data in-transit, and we’re not in the middle of slow-start or congestion avoidance.

If this segment was timed, update the round-trip timer. If all outstanding data is acked, stop the retransmit timer, otherwise restart it for the next segment. If there’s a process waiting to output, give the user a crack at the new space. Otherwise, if there’s data in the socket buffer, let the output routine decide whether to send it.

```c
if (SEQ_GT(ti->ack, tp->snd_una) &&
    SEQ_LEQ(ti->ack, tp->snd_max)) {
    if (tp->t_rtt && SEQ_GT(ti->ack, tp->t_rttseq))
        tcp_xmit_timer (tp);
    sbdrop(&so->so_snd, ti->ack - tp->snd_una);
    tp->snd_una = ti->ack;
    tp->t_timer[REXMT] =
        tp->snd_una == tp->snd_max ?
            0 : tp->t_rxtcur;
    m_freem(m);
    if ((so->so_snd.sb_flags & SB_WAIT) ||
        so->so_snd.sb_sel)
        sowwakeup(so);
    else if (so->so_snd.sb_cc)
        (void) tcp_output(tp);
    return;
}
```
Congestion Control Observations
Using NETMON

Allison Mankin
Mitre
Congestion Control Observations Using NETMON

Allison Mankin

MITRE
Internet Engineering Testbed

alcuin

bede

pepin

dagobert

mechtild

radegond/
mitre.daleth.gw.arpa

NETMON

ARPANET

X.25

MITRE
Expanded Internet Engineering Testbed
NETMON

- Internal packet monitoring for
  - BSD UNIX 4.3
  - SUNOS 3.X
  - ??

- Not restricted to Ethernet

- Would like some installation in other BSD clones
• Double buffer design and fixed-size records to minimize amount of interrupt disabling

• Timestamp can be from alternate clock

• Access (reading the records, modifying parameters) through special file
NETMON Records

- MBUF ADDR
- TIMESTAMP
- LOCATION
- EVENT
- INFO WORD
NETMON Records (continued)

- QUEUE LEN
- PROTOCOL DATA
  - 12 BYTES
  (Plus next record whole, if header mode is selected
  instead of measurement mode)
- Defined locations
  
  IP-IN       ETH_IN       X25_IN  
  IP-OUT      ETH_OUT      X25_OUT  
  ETH_DEQ     X25_DEQ

- Events

  DISCARD
  FORW
  AT_SEND_REQD
  AT_SEND_FAIL
  NEW_CIRC_REQD
  DELIVER
  REQUEST
INFO WORD
(Varied Meaning)
X25 LCN# (QUEUE ID)
Interface ID
NETMON Probes in Gateway - 4BSD IP and Network Drivers

MITRE
### Measurement Mode Example (as formatted by NETMONLOG)

<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
<th>Description</th>
<th>Count</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>4105</td>
<td>801E6700</td>
<td>16:45:11.84</td>
<td>ethIn&gt;0</td>
<td>0</td>
</tr>
<tr>
<td>4106</td>
<td>801E6700</td>
<td>16:45:11.84</td>
<td>ipInForw&gt;0</td>
<td>qe0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4107</td>
<td>801E6700</td>
<td>16:45:11.84</td>
<td>ipOutForw&gt;-1</td>
<td>dda0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4108</td>
<td>801E6700</td>
<td>16:45:11.84</td>
<td>x25Out&gt;2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4135</td>
<td>801E6700</td>
<td>16:45:13.03</td>
<td>x25OutDeq&gt;3</td>
<td>2</td>
</tr>
</tbody>
</table>
Measurements of Slow-start TCP

- Competing 4.2 TCP connections do hog bottleneck queue

- Attempts to find a cliff with increasing numbers of connection sharing bottleneck queue
  - Couldn't break RTT estimation - couldn’t see any spurious retransmissions and no established connections gave up
  - From 18 on, some connections got to SYN giveup point (relic of 4.2 - 75 seconds counted by keepalive timer)
    - All of these - 4 SYNs in a row source quenched (SQ preference to small windows)
  - Repeated, frequent queue overflow starting with 3 connections to same destination
Aside -
Need to be able to monitor for bottleneck queues like this 3-connection case

?? MIB Object -
First hop destination of last dropped packet
Poll in conjunction with a counter of drops
Preliminary Results on Random Dropping

- Algorithm selected with setsockopt

- **First Cut:**
  - `ip_output` gets Q empty/not empty indications from network drivers
  - hysteresis in starting and stopping random drop
  - when on, drop each jth (a random number) packet
  - source quench not sent

- **Direct observation → fairness, queue dynamics**
Random Dropping

- Queue max brought down to 5

- Many queue overflows in first 10 secs (out of 300) were totally eliminated by starting random drop at once instead of on next input

- Little decrease in total number of dropped packets - still have to “make mistakes to get information”

- 4.2 TCP gets large share of discards

- Innocent bystanders get very few discards (haven’t yet seen more than 1 discard for any background connection)
What Is USENET? What Is NNTP?

Gene Spafford
Purdue University
What is USENET? What is NNTP?

Subtitle: Where did all my disk space go?

Gene Spafford

Dept. of Computer Sciences
Purdue University
W. Lafayette, IN

spaf@cs.purdue.edu
Some History

- A News

Started as mailing lists in 1979 at Duke and UNC. Tom Truscott & Jim Ellis had the idea, based on UUCP.

Steve Bellovin did first version of news, with Steve Daniel. Intended for less than 100 sites, less than few messages per group.

- B News

B News at U. C. Berkeley by Mark Horton and Matt Glickman. 2.9 released in 1982.


- Extensions

2.10 was released in 1984 by Rick Adams @ seismo. Moderated groups were added at this time.
History (cont.)

- Directed Changes

  2.11 was released in 1986. Included batching, compression, sendme features, central consistency control.

- Next Generation

  Now in Beta Test — available 1989.
**Structure**

- Each article stored as a separate file
- Like articles are grouped in directories by topic
- Topics have hierarchies (comp, news, sci, soc, misc, rec, talk)
- Hierarchies differ by content and distribution. Examples: bionet, biz, world.
- Article structure defined in RFC 1036 — header and body. Simple files, simple text.
- Central control files contain pointers & authorizations
- Independent reader agents access files & display articles
- News posting and transfer agents interact with control files through well-defined functions.
Flow

- Articles copied to neighboring systems based on distribution

- Cycles rejected, too old articles rejected. Information in the article header used to determine validity.

- "Flooding" algorithm — redundancy built in

- Articles expired locally after set interval, or canceled
**Transport**

Primary transport for Usenet has always been UUCP.

- 1979 to 1982, 300 baud dial-up
- 1982 to 1985, 1200 baud dial-up
- 1985 to present, 2400 baud dial-up
  * 1986 had LZ compression, UUCP-over-TCP
  * 1986 saw NNTP arrive (RFC 977)
- 1987 to present, Telebit Trailblazers with MLZ and UUCP support
- 1986 to present, NNTP over TCP, UUCP over X-25
- 1985 to present, some sites get USENET via tape!
Traffic

Based on figures from R. Adams, H. Spencer, M. Horton, S. Bellovin and B. Reid:

- 1979: 3 sites, 2 articles per day
- 1980: 15 sites, 10 articles per day
- 1981: about 150 sites, 20 articles per day
- 1982: about 400 sites, 35 articles per day
- 1983: over 600 sites, 120 articles per day
- 1984: over 900 sites, 225 articles per day
- 1985: over 1300 sites, 375 articles per day, 1Mb+ per day
- 1986: over 2500 sites, 500 articles per day, 2Mb+ per day
- 1987: over 5000 sites, 1000 articles per day, 2.4Mb+ per day
Present Traffic (as of 10/1/88)

- Nearly 11000 sites.

- Sites in more than 17 countries, including Australia, New Zealand, Japan, Canada, England, Sweden, France, Italy and Germany.

- Over 1800 unique articles per day, average

- Over 4Mb of traffic per day, average

- Potential audience of 1,480,000 readers; actual readers in excess of 303,000.

- Most widely read group has over 40,000 regular subscribers.

- Over 450 active newsgroups

- over 80% of articles reach main sites in 1 day, over 97% in 3 days
Growth in Sites
Growth in Traffic

[Graph showing the growth of traffic from 1979 to 1988 with a significant increase in 1988.]
Control

...interesting feature — there is no authority!

Usenet operates on consensus and momentum.

- Any site can join

- No one controls flow, although some "old-hands" are listened to more carefully than others.

- Peer pressure is main control

- Abuses are surprisingly few and minor

- Voluntary education and upgrades — structure has some aids

- Increasing cost having more significance
NNTP

- Developed from independent work by Brian Kantor and Phil Lapsley, 1985.

- RFC 977, released in 1986

- Four major goals:
  * Reduce phone traffic for news transfer
  * Reduce "flooding" IP traffic
  * Allow diskless computers to access news
  * Reduce impact of mailing lists by integration with news

- Uses server daemon on TCP port.

- Supports posting, reading, transfers

- Reader agents for Unix, VMS, TOPS-20, MS-DOS, and Genera-7.

- Vastly increased connectivity; tremendous reduction in machine impact.
Concerns

• Increasing volume

• Educating users; maturity of users

• Comprehension of namespace

• Status of Usenet sites — not common carrier

• Costs — communications, CPU, disk, human

• Legal questions — copyright, trade secret, slander, over-zealous prosecutors

• Nutcases

• Continuity of software and guidance
Social Effects

- Citations to USENET
- Collaborative projects
- Conferences
- Software community
- Friendships, romances, marriages
- USENET as a condition of employment
- Image of schools and companies
- Growth of new services (uunet, for example)
- Source of research material
- Publications media — scholarly
- Publications media — fanzines (e.g., OtherRealms)
Some Futures

- Commercial USENET?
- Alternate networks?
- The "Balkanization of USENET"
- Reappearance of mailing lists
- Hypermedia
The NIC Domain Chart

Mark Lottor
SRI-NIC
ZONE
Zealot Of Name Edification

data collected
domains, servers
hostnames
nicknames
addresses
info
wks
MX
## Domain Tree-Walker Statistics

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domains</td>
<td>1280</td>
</tr>
<tr>
<td>Domains (no data)</td>
<td>140</td>
</tr>
<tr>
<td>Internet Hosts</td>
<td>56000</td>
</tr>
<tr>
<td>Registered Hosts</td>
<td>5700</td>
</tr>
<tr>
<td>MX-only entries</td>
<td>3500</td>
</tr>
<tr>
<td>&quot;*&quot; MX entries</td>
<td>550</td>
</tr>
<tr>
<td>Gen'd host table</td>
<td>4340 kb</td>
</tr>
<tr>
<td>Official host table</td>
<td>600 kb</td>
</tr>
<tr>
<td>Host table string searches</td>
<td></td>
</tr>
<tr>
<td>&quot;Sun&quot;</td>
<td>17800</td>
</tr>
<tr>
<td>&quot;Sun.Com&quot;</td>
<td>7500</td>
</tr>
<tr>
<td>&quot;Unix&quot;</td>
<td>14200</td>
</tr>
<tr>
<td>&quot;Vax&quot;</td>
<td>5500</td>
</tr>
<tr>
<td>&quot;IBM&quot;</td>
<td>4700</td>
</tr>
<tr>
<td>&quot;GW&quot;</td>
<td>2200 - N</td>
</tr>
<tr>
<td>Registered GWs</td>
<td>260</td>
</tr>
<tr>
<td>&quot;Tops-&quot;</td>
<td>60</td>
</tr>
</tbody>
</table>
On Some $T_1$ Satellite Link Performance

John Lekashman  
NASA-Ames  

[slides not provided]
7. ADDITIONAL WORKING GROUP UPDATES
Interconnectivity

Guy Almes
Rice University

NASA Ames Meeting
27 September 1988
Interconnectivity WG Update
Reported by Guy Almes

27 September 1988
NASA Ames Rsch Ctr.
Moffett Field, CA

Attendees:
Guy Almes <almes@rice.edu>, chair
Hans-Werner Braun <hwb@mcr.umich.edu>
Michael Brescia <brescia@alexander.bbn.com>
Scott Brim <swb@tcgould.tn.cornell.edu>
Joe Choy <choy@windom.ucar.edu>
Phill Gross <gross@gateway.mitre.org>, ex officio as
IETF chair
Milo Medin <medin@nsipo.nasa.gov>
Russ Mundy <mundy@beast.ddn.mil>
Mike St. Johns <stjohns@beast.ddn.mil>

Also in the Working Group, but unable to attend this meeting:
Marianne Lepp <marianne@alexander.bbn.com>
Jacob Rekhter <yakov@ibm.com>

The first meeting of the Interconnectivity Working Group was
hosted by Milo Medin of NASA, and was called, more or less, to
order at 9:00 a.m. Thanks to all those who could attend on such
short notice and to Milo for serving as host under the twin
disadvantages of recovering from a close encounter with a car and
being torn away from InterOps preparations.

We discussed our short and long-term agenda. In the short-term,
the IAB has asked Phill Gross for input on the status of EGP3,
and he has asked us for recommendations since this matter falls
squarely within our technical area. In the longer term we hope
to improve inter-autonomous-system routing in practical ways that
allow timely implementation. (Refer to the IWG Charter for a
more detailed discussion of this.) (NB: In hindsight, as
the meeting progressed, it seemed to me as though these two
agenda foci did not conflict as much as I had feared.)

Hans-Werner Braun reported on a meeting held at Ann Arbor on 15
August to discuss Inter-AS routing in the NSFnet context. There
was considerable overlap both of participants and of technical
focus, and we benefitted from their work and insight. (Refer to
Hans-Werner's notes from this meeting.) There were two technical
suggestions that arose at that meeting that proved important for
our our meeting:

<1> Include in the entry for each destination network advertised
the AS# (i.e., the 16-bit Autonomous-System Number) of the
autonomous system from which the advertiser learned the route.
<2> Develop some EGP3 metrics that describe how the route was learned. Much of our meeting consisted of:

<a> discussing how we thought Inter-AS routing should work and
<b> discussing how EGP-3 with these two suggestions could allow this to take place.

In the following discussion we agreed that the hierarchical NSFnet Model of (a) Multiple national backbones (backbones for short), (b) Multiple mid-level networks (regionals for short), and (c) Many campus networks (campuses for short) was normative. Each regional connects to a generally large set of campuses, and to one or more backbones. It advertises these campuses to each of the backbones, and advertises all its known routes to its campuses (or else advertises default to its campuses). It will occasionally happen that a regional connects to another regional; great care must be taken in this case. Each backbone connects to a possibly large subset of regionals, and may also connect to one or more other backbones and possibly to some campuses. There is a so-called Two-Phase Rule that dictates that a packet travels across the internet in two phases. During the first phase, it travels 'up' the hierarchy; each Inter-AS hop in this phase either stays at the same level (e.g., backbone to backbone) or goes up a level (e.g., from regional to backbone). During the second phase, it travels 'down' the hierarchy; each Inter-AS hop in this phase either stays at the same level (e.g., backbone to backbone) or goes down a level (e.g., from regional to campus). Thus, once a packet goes 'down' the hierarchy once, it can never go 'up' again. In our consideration of EGP3, we tried to think about how it would enable smart gateways between AS's to make appropriate decisions without violating simple policy rules or creating routing loops. As usual, we want to determine strategies that improve the current situation while being deployable within the near-term future.

With specific regard to EGP3, we came up with the following:

<1> The EGP3 Idea paper should be revised and turned into an RFC as a Proposed Recommended Standard. We understand this will require work, and will help Marianne with the needed additions while keeping editorial leadership with her.

<2> Add to the current EGP3 design a Next-AS field in each route. This field denotes the immediate AS from which the advertising AS received the route. There needs to be some denotation of an empty value for this field.

<3> We will need a Metric Type that measures the number of AS's in the EGP chain from the originating AS. This metric is important in the case that a non-empty Next-AS value had to be "shifted out". The metric will have allowable values for other cases, but its presence will be mandatory when this shifting out has occurred.
We will need to describe recommendations for normative use. For example, we should describe how the protocol can be used in a fashion that avoids routing loops.

We recommend that EGP3 be used within NSFnet, the NASA Science Network, the NSFnet-related mid-level networks, and other components of the national research internet. We understand that conversion of the DDN to EGP3 may take quite a long time for a variety of primarily non-technical reasons.

In addition to the Metric Type for AS hop count, we also recommend a Metric Type that, for advertisements coming from the NSFnet Backbone, will mark the route as via the primary or secondary or tertiary Backbone exit point.

We recommend that vendors and other implementers of external gateways (as distinct from intra-AS routers) try to exploit the possibilities presented by EGP3 in evolving toward greater sophistication. The trend we encourage is one in which the notion of Border Gateways that connect different AS's to each other grow in capability.

We note that the route data communicated by the EGP3 packets can be split into two kinds: (1) information about the interconnection of various AS's and (2) information about which destination networks are reachable via these AS's. There is reason to think these two kinds of data will change in different patterns and that updates to them can be handled differently. Studying this distinction in practice and exploiting it are important for us to do.

We stress that there is a great need for an active engineering effort in this area, and we urge both the refinement and implementation of EGP3 and its exploitation.

This engineering effort will need to include the use of such measurement tools as Braden's statspy.

This engineering effort will provide fruitful areas of interaction between the Interconnectivity Working Group and the FRICC's "Intersec" Workshop and the IETF's Open Inter-Autonomous System Routing Working Group. We look forward to this interaction.

With specific regard to the Core, we came up with the following:

Part of our answer is implicit on our recommendations regarding EGP3.

A certain amount of manually entered data, such as the so-called "Policy routing database" of the NSFnet backbone, will probably been needed for the foreseeable future.
We discussed the following as normative patterns of routing exchange:

* There would be one Backbone that advertises to its regionals routes learned from other regionals. (That backbone can be thought of as serving as the core.)

* A regional may not advertise to one Backbone what it learned via another Backbone.

* A Backbone, on the other hand, may advertise to its regionals routes learned via another Backbone.

* We note that EGP3 allows more liberality than the current EGP without introducing dangerous exchanges of routes. Work and time will be needed to exploit this.

* There is a two-phase rule that we regard as (near) absolute: What goes up does come down, but what goes down never comes up. (This refers to packets going up and down the hierarchy of Backbone, Regional, and Campus.) (In this context, lateral motion is fine, but it makes the two-phase rule more difficult to enforce.)

We will meet at the October 1988 IETF meeting in Ann Arbor to work further on these issues.
PDN Routing

Carl-H. Rokitansky
Fern University of Hagan

USNA, Annapolis Meeting
15-17 June 1988
Report of the Initial PDN Routing Group Meeting, June 16, IETF, USNA, Anapolis

(These summarizing notes of the initial PDN Routing group open meeting from the June 15 - 17 IETF were prepared by Carl-H. Rokitansky, Fern University of Hagen, FRG)

The PDN Routing group met on June 16, 1988 at IETF, USNA, Anapolis. The attendees were:

- Len Bosack, CISCO
  * Mike Brescia, BBN
- Ed Cain, DCA
  * J.J. Garcia-Luna, SRI
- Martin Gross, DCA
- Mike Little, M/A-COM
  * Mark Lottor, SRI-NIC
  * Bill Melohn, SUN
- John Moy, PROTEON
  * Carl-H. Rokitansky (chair), Uni Hagen
  * Greg Satz, CISCO
  * Zaw-Sing Su, SRI

(* indicates membership of the PDN Routing group)

The meeting covered administrative items, background information and technical discussion:

1. Charter and Goal of the PDN Routing Group

The DoD INTERNET TCP/IP protocol suite has developed into de facto industry standard for heterogenous packet switching computer networks. In the US the ARPANET/MILNET connects several hundreds of INTERNET networks, however the situation is completely different in Europe: The only network which could be used as a backbone to allow interoperation between the many local area networks in Europe, now subscribing to the DoD INTERNET TCP/IP protocol suite, would be the system of Public Data Networks (PDN). However no algorithms are provided so far to dynamically route INTERNET datagrams through X.25 public data networks. Therefore the goals of the Internet/Public Data Network Routing group are the development, definition and specification of required routing and gateway algorithms for an improved routing of INTERNET datagrams through the system of X.25 Public Data Networks (PDN) to allow worldwide interoperation between TCP/IP networks in various countries.
Main objectives of the PDN Routing group are:

- Define the cluster addressing scheme and its application to public data networks as an INTERNET standard

- Specify gateway algorithms and protocols to be used by VAN-gateways

- Develop an X.121 Address Server/Resolution Protocol

- Develop (or support other working groups in developing) routing algorithms based on routing metrics other than hop-count: costs, delay, throughput, TOS, etc.

- Provide interoperability with ISO/OSI networks via the PDN

- Specification of protocols required for an European INTERNET/Public Data Network information and operation center (cooperation with US-INTERNET NICs and NOCs)

- ISO-Migration of the INTERNET/PDN cluster

2. Mailing Lists

The intention was to install two mailing lists for the PDN Routing group. Members of the PDN Routing group will be put on an "IETF-PDN" list for internal discussion of proposals and group organization. People, interested in the ongoing work of the PDN Routing group will be put on an "IETF-PDN-INTEREST" list on request. First draft versions of proposals of the PDN Routing group will be sent to this list to encourage discussion and comments.

3. Meetings

The PDN Routing Group will meet periodically at the regular IETF meeting. These meetings will be open meetings. In addition, members might meet right before or after the IETF meeting. BBN has offered to host such (closed) PDN Routing Group meetings, if no other place is available.

4. PDN Routing Group - Short Term Goals (3 - 6 months)

4.1 PDN-Cluster

Reserve INTERNET network numbers for the PDN-cluster according to the cluster addressing scheme: check with Jon Postel and SRI-NIC

4.2 VAN-Gateways

Check which changes to the IP code would be required to support the cluster addressing scheme in existing VAN-gateways (BBN-VAN-GW).

4.3 INTERNET Gateways
Check if advertising a bunch of additional European INTERNET networks by means of EGP messages would cause a problem to the DoD INTERNET gateway system.

4.4 EGP3

Check for topological restrictions. Check if EGP3 satisfies the requirements for network reachability information exchange between VAN-gateways and if not develop a concept how a modified version of EGP3 could be used between VAN-gateways.

4.5 Routing Metrics

Develop a concept how PDN cost metrics can be taken into account in INTERNET routing decisions depending on hop count, etc.

4.6 Source Routing

Check which TCP/IP implementations (ULTRIX, TOPS-20, VMS, etc.) use the IP Source Route option, if specified in received datagrams, even in their reply packets; check with implementors if the IP Source Route option is neglected in reply packets.

4.7 Performance Tests

Provide a testbed for performance tests between PDN-hosts and INTERNET hosts via VAN-gateways subscribing to the cluster addressing scheme.

5. Medium-Term Goals (6 months to 2 years)

- Develop an X.121 Address Server/Resolution Protocol
- Develop (or support other working groups in developing) routing algorithms based on routing metrics other than hop-count: costs, delay, throughput, TOS, etc.
- Continue performance tests
- Specify the INTERNET/PDN-cluster as an INTERNET standard
- Interoperability with ISO/OSI networks in Europe and elsewhere

6. Long-Term Goals (2 - 5 years)

- Specification of protocols required for an European INTERNET/Public Data Network Information and Operation Center (cooperation with US-INTERNET NICs and NOCs)
- ISO-migration of the INTERNET/PDN cluster
7. ICCC '88 Presentation

The "Internet Cluster Addressing Scheme and its Application to Public Data Networks" will be presented at the 9th International Conference on Computer Communication (ICCC '88) in Tel Aviv, Israel, Oct 30 - Nov 4, 1988.


- DFN: The German Research Network (DFN) favors the implementation and use of ISO/OSI protocols. However since these protocols are not fully specified and not generally available so far, most of the attached universities are now running LANs using TCP/IP protocols. Most sites would be very interested in an interoperability between these LANs through the national X.25 Public Data Network (DATEX-P) as well as to interconnect these LANs to the US INTERNET via international links (point-to-point links and SVC through X.25 by means of VAN-gateways). One disadvantage of using X.25 connections is the fact that the costs depend on the data volume transferred. However, fortunately, the DFN has agreed with the German PTT, that the PTT will probably offer an X.25 research network for universities and research establishments at fixed (reasonable) costs. Since similar projects are under consideration in other European countries (Netherlands, etc.), an European X.25 research network might be implemented within the next years. This would have a significant advantage for the interconnection of academic LANs now using TCP/IP, because the exchange of INTERNET network reachability information between attached LANs via X.25 research network links would not be cost sensitive at all.

- BELWUE: The experimental Baden-WUerttemberg Extended Lan (BELWUE) is a high speed network at 140Mbit/sec (!), also subscribing to the TCP/IP protocol suite and interconnects computers and supercomputers (CRAY, etc.) at the University of Stuttgart and the University of Karlsruhe. Several universities and some companies in the Stuttgart area would be interested to be connected to this high speed network for online use of CRAY services via X.25 links.

- other: Several other networks in Europe are using (e.g., EUNET), or plan to use TCP/IP protocols, and are interested to be connected to the US INTERNET (point-to-point links or X.25 connections).

9. X.121 Address Server/Resolution

An important issue is the development of an X.121 Address Resolution Protocol. X.25 specific characteristics (no broadcast feasibility, cost sensitive, no reverse charging on international calls) must be taken into account.
10. Routing of INTERNET datagrams through X.25 networks

To allow worldwide interoperation between LANs now using TCP/IP protocols via VAN-gateways and X.25 links, network reachability information must be exchanged. The question is, whether this information should be spread worldwide, and maintained and updated in all INTERNET gateways or it should be gathered and updated in specific route servers, and provided on request.

11. Action items

- Development of an X.121 address resolution protocol (Mike Brescia)
- Discussion of methods and requirements involving route servers (Len Bosack/Greg Satz)
- Development of hierarchical gateway algorithms for PDN routing and network reachability information exchange between level-1 and level-2 VAN-gateways (Carl-H. Rokitansky)
- Submission of final version of the INTERNET cluster addressing scheme paper for publication in Proceedings of the ICCC'88 (Carl-H. Rokitansky)
- Proposal for a sophisticated mapping between DNICs and INTERNET/PDN-cluster network numbers (Carl-H. Rokitansky)
- Procedure of assigning and organizing PDN-cluster network numbers (Zaw-Sing Su/Mark Lottor)

12. Next meeting

The next (open) meeting of the PDN Routing group will be at the IETF meeting at Ann Arbor in October.

Carl-H. Rokitansky
8. PAPERS DISTRIBUTED AT IETF
NSFnet Connectivity and Configuration

Susan Hares
Merit, Inc.
Pittsburgh Supercomputer Center (PSC)

Pittsburgh, PA

Logical connections

NSS #5
Pittsburgh

NSS #9
College Park
IP Address: 129.140.69.9

NSS #11
Houston
IP Address: 129.140.69.11

NSS #12
Champaign
IP Address: 129.140.69.12

NSS #17
Ann Arbor
IP Address: 129.140.69.17

Broadcast Address: 192.5.146.255

AS #204

NSS #5
Pittsburgh
Protocol: EGP

Vax running gated
PSC - GW3
Protocol: RIP

PSCnet

<table>
<thead>
<tr>
<th>Net Number</th>
<th>Net Name</th>
<th>Network Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.2</td>
<td>CMU-NET</td>
<td>Carneige Mellon University, Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>128.146</td>
<td>OHIO-STATE</td>
<td>Ohio State University, Columbus, Ohio</td>
</tr>
<tr>
<td>128.182</td>
<td>PSCNET</td>
<td>Pittsburgh Supercomputing Center, Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>129.1</td>
<td>BGSU</td>
<td>Bowling Green State University, Bowling Green, Ohio</td>
</tr>
<tr>
<td>129.22</td>
<td>CWRUNET</td>
<td>Case Western Reserve University, Cleveland, Ohio</td>
</tr>
<tr>
<td>129.137</td>
<td>UN-OF-CINCI</td>
<td>University of Cincinnati, Cincinnati, Ohio</td>
</tr>
<tr>
<td>129.25</td>
<td>PRPNET</td>
<td>PRPNET, Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>130.49</td>
<td>U-PITT</td>
<td>University of Pittsburgh, Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>192.5.146</td>
<td>CPW-PSC</td>
<td>PSCNET NSS 5, Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>192.31.3</td>
<td>ALCOA-NET</td>
<td>Aluminum Company of America, Alcoa Center, Pennsylvania</td>
</tr>
<tr>
<td>192.35.79</td>
<td>CCFNET</td>
<td>Cleveland Clinic Foundation, Cleveland, Ohio</td>
</tr>
</tbody>
</table>

10-15-88
Logical connections

NSS #5
IP Address: 129.140.75.5
Pittsburgh

NSS #13
IP Address: 129.140.75.13
Palo Alto

NSS #17
IP Address: 129.140.75.17
Ann Arbor

Broadcast Address: 128.241.0.95

CISCO
Protocol: IGRP

SESQUINET
IP Address: 128.241.0.81

Net Number Net Name Network Location
128.42 Rice-Net Rice University, Houston, Texas
128.83 UT-Austin University of Texas, Austin, Texas
128.194 TAMU-Net Texas A&M, College Station, Texas
128.241 Sesquinet Rice University, Houston, Texas
128.249 TMC-Net Texas Medical Center, Houston, Texas
129.7 UH-Net University of Houston, Houston, Texas
129.106 UTHOUSTON University of Texas, Houston, Texas
129.107 UT-Arlington University of Texas at Arlington, Arlington, Texas
129.108 UTEPaso University of Texas at El Paso, El Paso, Texas
129.109 UT-Galveston University of Texas at Galveston, Galveston, Texas
129.11 UT-Dallas University of Texas, Dallas, Texas
129.111 UTHCASA University of Texas, Health Science Center, Dallas, Texas
129.112 UTSWMED University of Texas, Southwestern Med Center, Dallas, Texas
129.113 UTP-Basin University of Texas of the Permian Basin, Odessa, Texas
129.114 UTC-CSPRD University of Texas, MD Anderson Cancer Center
129.116 CHPC-HYPERHOSE University of Texas, Center for High Performance Computing
129.118 TXTech Texas Tech University, Lubbock, Texas
129.12 UNTexas North Texas University, Denton, Texas
129.207 PVAMU-Net Prairie View A&M University, Prairie View, Texas
192.6.201 UT-SanAntonio University of Texas at San Antonio, San Antonio, Texas
192.16.72 UTC-HPC University of Texas, Austin, Texas
192.31.67 HARC-Net Houston Area Research Center, The Woodlands, Texas
192.31.88 BCM-Tech-Net Baylor College of Medicine, The Woodlands, Texas
192.31.101 TSU-Net Texas Southern University, Houston, Texas
192.31.152 rosenet Rosetta Inc., Houston, Texas

As #114
IP Address: 128.241.0.81

PRIMARY

10-15-88
Merit Computer Network

(Untiversity of Michigan)

Logical connections
- NSS #7 Boulder
  - IP Address: 129.140.81.7

- NSS #10 Ithaca
  - IP Address: 129.140.81.10

- NSS #8 Trenton
  - IP Address: 129.140.81.8

- NSS #5 Pittsburgh
  - IP Address: 129.140.81.5

Test Network
- NSS #1 Ann Arbor
  - IP Address: 129.140.81.1
  - Protocol: EGP
  - Broadcast Address: 35.1.1.255

NSS #17 Ann Arbor
- IP Address: 35.1.1.50

CISCO
- Protocol: RIP
  - AS #177
    - IP Address: 35.1.1.17

CISCO
- AS #184
  - IP Address: 35.1.1.1
  - Protocol: EGP

ARPANET Interface
- T1 Link
  - IP Address: 10.6.0.37

Purdue IMP
The NSFNET Backbone Network Project is managed and coordinated by The Merit Computer Network under sponsorship of the National Science Foundation, Agreement No. NCR 8720904.
Management and Operation of the NSFNET Backbone Network

August Monthly Report

Merit Computer Network

NSFNET Traffic Statistics

With the advent of August, the production NSFNET backbone marks its first full month of sustained operation for all nodes. This is reflected in the traffic statistics, which are reported for all 31 days of the month. Again, the packet numbers are collected hourly and reflect packets into and out of each NSS as measured at the LAN-0 interface. These counts are collected via SGMP for each node and stored in a SPIRES database on the Information Services host machine. Figures A through F summarize the findings for August, with actual numbers shown in the spreadsheet in Table 1.

For August, the total packet counts are 202,641,056 packets in and 194,041,532 out. The daily number of packets peaked at over 20 million, more than 5 million higher than the maximum reported for July. Again in August, there is a consistent drop in traffic on weekends, with the lowest days recorded on Sundays. Highest counts are appearing on Wednesday (a trend which changes in September, judging by our preliminary analyses of September data). The lower rates on days around weekends may in part relate to the prevalence of vacations and long weekends many researchers have during August. In general, packet counts are steadily increasing, with the higher counts all occurring during the later part of August.

The packet numbers vary dramatically by NSS, with two sites reporting usage much greater than the other thirteen. Both JVNCnet (NSS 8) and CNSF/NYSERNet (NSS 10) have monthly totals greater than 60 million each. By contrast, Westnet (NSS 15) and Midnet (NSS 16) report less than 10 million packets each. This in part is related to the number of attached networks at each NSS, although other factors also are affecting these counts including the maturity of the regional networks and the co-location of a supercomputer center. The relationship between these factors will be further analyzed in future reports.

One-way delay data

As with packet data, August marks the first month for which a complete report of one-way delay data is available for the new backbone. Pings were recorded once each day between all pairs of NSSs. (However, technical
problems resulted in the loss of data for NSS 8 during August.) The ping data has been divided by two to get the one-way delays in accordance with our agreement with NSF. Table 2 shows the minimum, maximum, and average times recorded for each pair. Perhaps the most notable trend is the fact that the average is at the lower part of each range, indicating that the higher delays are relatively rare. Variation in average times is partially related to real distance as well as the number of IDNX hops required between any given pair. These factors are continuing to be analyzed.

Significant Network Events

The data from the month of August shows overall stability of the network. Generally, the outages are short and infrequent. These data are presented in Table 3. Outages were divided into two categories "Class One" is full node outages and "Class Two" is partial node outage resulting in reduced performance relative to the backbone. As the tracking mechanisms develop and problem determination improves, it is our hope that certain outages will be avoidable.

All "Class One," full node outages, were limited to only a few hours. "Class Two," outages resulting in minor performance degradation, was limited to less than a day.

The longest "Class Two" outage was that of JVNC on August 8. Even in this case, full recovery was made in less than 24 hours. In other "Class One" outages, JVNC's link to SURANet was lost, and work is being done to determine exactly why this occurred and what can be done to prevent it from happening again.

This report includes the following information:

**Table 1:** Raw packet counts in and out of the NSFNET backbone
Shows the total number of packets per day for each NSS for the month of August.

**Figure A:** Daily aggregate packet counts
Shows the total packet count for all nodes for each day during the month of August.

**Figure B:** Weekly aggregate packet counts
Shows the total packet counts for all nodes by week during the month of August

**Figure C:** Average packet counts by day of the week
Shows the average number of packets in and out by day of the week for all NSSs.

**Figure D:** Aggregate packet counts by node
Shows the total packet count by node for the month of August

**Figure E** Aggregate weekly packet counts in and out per NSS
Shows the weekly number of packets in per NSS.
Shows the weekly number of packets out per NSS.

**Figure F:** Daily range and average of packets in and out per NSS
Shows minimum, maximum and average packets for the Month of August in of each node.
Shows minimum, maximum and average packets for the Month of August out of each node.

**Table 2** Average one-way delay times (in milliseconds)
Shows minimum, maximum, and average between all NSS pairs for the month of August.

**Table 3** NSFNET Significant Network Events
Shows outages, the resolution of the problem, and the classification for each outage.

The following figures are by NSS number. The key for these is:

5 PSCNET
6 SDSCNET
7 USAN
8 JVNCNET
9 SURANET
10 CNSF/NYSERNET
11 SESQUINET
12 NCSA
13 BARRNET
14 NORTHWESTNET
15 WESTNET
16 MIDNET
17 MERIT
Table1
NSFNET
Traffic-August 1988
Packetsper day for eachNSS

TRAFFIC PATTERNS--AUGUST

P,,ck~t~In
8/1
8/2
8/3
8/4
8~5
8/6
8/7
8/8
8/9
8/10
8/11
8/12
8/13
8/14
8/15
8/16
8/17
8/18
8/19
8t20
8/21

252.,00~
377.221
315,926
383,84,8
429,381
142,913
114,017
254,437
43~,643
378,989
333,410
86,148
271,10~
230 681
263 351
318142
312,022
299,425
349,S24
298,120
:229,938

461.233
558.071
783,008
509,4,99
377,635
222,446
132.440
387.417
587,400
657,832
29.948
190,494
312.219
212.353
550,760
823,225
591,051
589,BI21
682,229
229.48~
3:38,063

4~5,g[26
365.924
4~6,948
414,330
310,05~
162.418
182.558
344,784
335,664
450,916
8.385
76,251
215,182
343,979
353,05~
450,581
426,027
488,084
380,308
231.947
292.817

1,115"228 1,0~7,611
1.137.717 1.202.341
2"261.85~ 1,063,481
1.552.535 706,463
1,279,183 527,114
849,269
30Q,854
791,479
290,982
1.141"20~ 693,973
1,345,387 719,363
1,752.468 713,086
101,488 653,g~9
278,902
152,042
704,243
410,276
818,572
302,548
1,090,713 497,531
1,175,316 832,203
745,773
765,038
1,161.9:3~ 554,058
n/i
1,35~742
1,063,313
n/a
287,463
909,(]03

8/24
8/25
8/26
8/27
8/28
8/29
8/30
8/31

425,210
262.~2
342.510
217,319
n/a.
277,714
327.087
596,3~)

551,M
485.485
,5~,742
271,796
IVa
331,926
5~8,087
662,572

798,934
484,522
734,744
343,3~2
153,332
380,768
812.g20
679,445

1,980,403 717.151 1,975,25~
1,079,865 816,955 1,137,529
2,214,211 1,032,153 2.041,251
1.601.178 733"295 1,351,952
505.747
305,076
59~,813
1,174,004 688,002 1,03~561
1o662,409
1,564,672 1,237,~50
1,641,653 1,188,315 1,878,332

427.640
400.017
39g.505
462.059
464,234 ,1,311,271
413.951
415,062
2<30.941 336.352
189.039
214.882
116"29~ 202.829
351.~9
372.371
455.021
422.854
610.869
493.550
426.015
26.788
178.~6
85.961
242.240
2~2..4.~
lg7,313
374.882
481.744
346.761
534.~
445.177
310.830
40~.616

971.815
896.310
879.874
897.879 1.091.448 919.870
1,293,423 922,626
880.487
1.164.507 8~.415 1.094.165
8.39.3~2
1.078.955 587.g~6
290.563
423.633
508.871
3~.g75
630.751
511.174
913.302
732.546
710.~4
894,316
1.264.977 757.190
1.233.449 756.80~ 1.146.270
747.251 1.000.571
51.539
176.561 240.613
266.152
541.724
6~0.8~1 444.468
316.g61
565.~6
5.~115
697.400
98g.g86
620.376
678.380 1.000.150 974.351
635,364
987.407
73~655

162.285
216.3~
399,476
300.502
356,419
418,485
547,147
255.202
n/~
290,688
453,561

792.411
650.644
764,918
1.266,423
1,499,027
848,203
1.697,8K2
1.065.841
473,559
820,887
1,176,616

Packetsout
8/1
221 102
8r2
317 144
324 303
8/3
8/4
467 414
8/5
331 624
8/6
248 933
8/7
124 120
8/8
247 003
Ib~
421 439
35g 124
8/10
8/11
294 357
8/12
48.525
8/13
174.799
8/14
305.19~
8/15
2~.~2
8/16
292.083
8/17
35~.152

8/20
8/21
8/22
8/23
8/24
8/25
8/26
8/27
8t2~
Ib’29
8/30

235.576
297.162
292,582
162.817
357,004
278.252
414,377
142.438
n/a
309,270
319,806

248.544
350.561
4.32.381
60e.689
819.567
487,758
711,39e
316,748
162,~2
338,223
819,56~

376.g50
347.407
334.00~
702.948
898,g79
638.202
788,5~0
481.479
320.337
555.052
881,012

1,100,730
1.138.780
1.295,505
1.414,877
1,504,711
624.0b"7
664,9:~
1,374,81~
1,271,011
1,057,245
325.920
294,172
780,576
665,550
920.099
1.387,200
1,24~,115
1,181,33~
1,097.525
753,110
589,733

742.237
400.484
1.121,~0
1.447,086
1,597,386
1,095,924
1,998.438
1,772.877
850.778
1,058,251
1,77~,255

200,153
281.6G0
277.560_
308,~
282,963
191,575
249,778
318,464
330,859
368.337
225,044
112.647
18~,329
168,~
230.222
414.385
415,438
263,588
490,349
297,191
259,795

161,755
135.530
142.459
108,468
189.025
72,283
72.078
123,848
146,43~
170.838
200,757
24.652
58,811
99,976
156,657
206.515
233,641
134.924
2~0.898
90,181
58,744

116,446
104.117
117.139
82.811
123,601
77,589
11,485
90,629
69,904
87,858
2.864
9,344
42.187
61.284
68.911
102.324
112.440
82,7912
73,139
53.713
21.796

273,085 1,053,892 492,855
80e,373
870.079
215,150
241,931
954,131 1,283,757
781.4e2
823,163
273,748
475,339
389,641
61,725
231,271
798,~4
567,187
413,018 1.185.526 1,064.84~
375,;~2 1,032,600 1,214,62:3

30~,494
299.e08
4~J,337
154,761
227.121
195,085
336,065
442.188

181,204
190,172
189,T73
139.688
48,56~
98,400
334,203
25a.182

103,889
90.525
85.148
38,790
51,179
64,163
131,031
81.441

293.733
271.384
298,834
290.935
276.988
165.163
195.156
487.584
379.915
346.106
10.457
65.392
143.762
230.712
316.425
373.154
336.g24

1.036.189
1.171.476
1,074,846
755.637
608.336
524.368
397.076
607.492
660.830
762.315
87.794
272.567
491.14.9
388.767
761.08~
1.021.9,14
77~081

267.145
297.867
310.541
360.982
384.C~2
209.206
280.209
367.027
321.701
425.464
20.857
122.133
245.081
211.876
279.410
487.873
427.981

71.619
68.221
54,955
64.016
208.412
57.358
60.134
76.436
83.454
111.989
104.310
16.966
60.293
77.~0
130.059
156.948
194.470

51.673
66.878
74.2~
75.692
63.487
29.695
10,250
46.229
53.924
79.393
74.419
9.473
41.541
53.319
61.454
68.667
67.917

176.701
803.88~
5~.’/~
520.435
447.862
232.814
330.800
719.987
639,080
519,157
267.925
580.016
316,932
885,888 1,08~676
775,065
2~,874
75~,152
290,153 1.051,484 1,144,816
64~,~4
845,229
274,~00
85,105
348,144
320,507
281,42~
513,097
540,802
488,779 I’254,052 1,012.637

164.70:3
284.837
611,853
283.741
346,163
314.355
392.148
164.127
148,914
182.185
400,730

64.327
39.125
174.8~7
117.382
240,633
224.328
222.559
190.~G4
25,597
101,715
259.~4

62.3~8
27.538
90.137
43,345
642.81
81,700
64,182
46.751
52.306
51,900
90.198

407.431
257.687
269,134
294,7’81
256,890
171,206
188,639
435,885
372,149
319,884
183,939
56,673
148,385
2(~,eb’7
272.702
337~87
319,35~
309,21~
235~128
133,081
176,763

643,96~
807.463
711,149
890.074
652.023
529,821
611,L~9
719,42~
890,305
649,9l;3
647°702
198,254
447,187
445,776
579,685
73~,642.
713,423
723,16~
e55,297
545,4r~
48~,132

892.112
813.6~8
754,585
996"2~
741.227
604.215
659.4~
864.448
945.g05
962.175
33.493
248.711
585.112
624.645
987.034
937.414
720.98~

779,087
644.104
642,378
766,099
4.50,304
515,195
388,568
771.907
765,194
888,120
58,96~
328,776
579,297
464,636
829,057
693,632
381.638
305,218
300,198
298,743
203,351


Figure A
NSFNET Traffic—August 1988
Daily packets in and out
for all NSSs
Figure B
NSFNET Traffic—August 1988
Weekly packets in and out for all NSSs

Number of packets

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Total out</th>
<th>Total in</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/1 - 8/7</td>
<td>60,000,000</td>
<td>40,000,000</td>
</tr>
<tr>
<td>8/8 - 8/14</td>
<td>60,000,000</td>
<td>40,000,000</td>
</tr>
<tr>
<td>8/15 - 8/21</td>
<td>60,000,000</td>
<td>40,000,000</td>
</tr>
<tr>
<td>8/22 - 8/28</td>
<td>60,000,000</td>
<td>40,000,000</td>
</tr>
<tr>
<td>8/29 - 8/31</td>
<td>60,000,000</td>
<td>40,000,000</td>
</tr>
</tbody>
</table>
Figure C
NSFNET Traffic—August 1988
Average number of packets in and out by day of the week for all NSSs
Figure D
NSFNET Traffic—August 1988
Total number of packets in and out per NSS

Number of packets

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 70,000,000

nss5  nss6  nss7  nss8  nss9  nss10  nss11  nss12  nss13  nss14  nss15  nss16  nss17

[Diagram showing packet counts for different NSs, with bars representing total packets in and out]
Figure E
NSFNET Traffic—August 1988
Weekly packet counts in per NSS

Number of packets

NSFNET Traffic—August 1988
Weekly packet counts out per NSS

Number of packets
Number of packets

Figure F
NSFNET Traffic—August 1988
Daily minimum, maximum and average number of packets in per NSS

Minimum/maximum
Average

NSFNET Traffic—August 1988
Daily minimum, maximum and average number of packets out per NSS

Minimum/maximum
Average
### Table 2
NSFNET Traffic—August 1988
Average one-way delay times

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>max</th>
<th>min</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS5</td>
<td>NS5</td>
<td>4.4</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>NS5</td>
<td>NS6</td>
<td>86.9</td>
<td>74.8</td>
<td>78.1</td>
</tr>
<tr>
<td>NS5</td>
<td>NS7</td>
<td>69.1</td>
<td>50.5</td>
<td>56.7</td>
</tr>
<tr>
<td>NS5</td>
<td>NS8</td>
<td>63.6</td>
<td>42.9</td>
<td>50.0</td>
</tr>
<tr>
<td>NS5</td>
<td>NS9</td>
<td>52.3</td>
<td>38.6</td>
<td>44.0</td>
</tr>
<tr>
<td>NS5</td>
<td>NS10</td>
<td>63.8</td>
<td>50.2</td>
<td>53.8</td>
</tr>
<tr>
<td>NS5</td>
<td>NS11</td>
<td>57.1</td>
<td>40.2</td>
<td>47.8</td>
</tr>
<tr>
<td>NS5</td>
<td>NS12</td>
<td>48.0</td>
<td>30.7</td>
<td>36.8</td>
</tr>
<tr>
<td>NS5</td>
<td>NS13</td>
<td>86.7</td>
<td>72.4</td>
<td>77.8</td>
</tr>
<tr>
<td>NS5</td>
<td>NS14</td>
<td>83.7</td>
<td>78.9</td>
<td>79.8</td>
</tr>
<tr>
<td>NS5</td>
<td>NS15</td>
<td>70.4</td>
<td>64.2</td>
<td>65.2</td>
</tr>
<tr>
<td>NS5</td>
<td>NS16</td>
<td>88.1</td>
<td>74.6</td>
<td>78.4</td>
</tr>
<tr>
<td>NS5</td>
<td>NS17</td>
<td>34.2</td>
<td>20.4</td>
<td>24.7</td>
</tr>
<tr>
<td>NS6</td>
<td>NS5</td>
<td>77.7</td>
<td>71.9</td>
<td>72.9</td>
</tr>
<tr>
<td>NS6</td>
<td>NS6</td>
<td>3.4</td>
<td>1.5</td>
<td>1.6</td>
</tr>
<tr>
<td>NS6</td>
<td>NS7</td>
<td>30.8</td>
<td>27.6</td>
<td>27.9</td>
</tr>
<tr>
<td>NS6</td>
<td>NS8</td>
<td>87.6</td>
<td>76.6</td>
<td>78.2</td>
</tr>
<tr>
<td>NS6</td>
<td>NS9</td>
<td>101.1</td>
<td>93.4</td>
<td>94.7</td>
</tr>
<tr>
<td>NS6</td>
<td>NS10</td>
<td>100.3</td>
<td>87.7</td>
<td>89.3</td>
</tr>
<tr>
<td>NS6</td>
<td>NS11</td>
<td>105.7</td>
<td>97.1</td>
<td>98.0</td>
</tr>
<tr>
<td>NS6</td>
<td>NS12</td>
<td>69.1</td>
<td>67.0</td>
<td>67.2</td>
</tr>
<tr>
<td>NS6</td>
<td>NS13</td>
<td>23.3</td>
<td>21.5</td>
<td>21.7</td>
</tr>
<tr>
<td>NS6</td>
<td>NS14</td>
<td>28.8</td>
<td>28.1</td>
<td>28.2</td>
</tr>
<tr>
<td>NS6</td>
<td>NS15</td>
<td>46.6</td>
<td>44.4</td>
<td>44.7</td>
</tr>
<tr>
<td>NS6</td>
<td>NS16</td>
<td>44.1</td>
<td>42.9</td>
<td>43.0</td>
</tr>
<tr>
<td>NS6</td>
<td>NS17</td>
<td>57.9</td>
<td>55.2</td>
<td>55.6</td>
</tr>
<tr>
<td>NS7</td>
<td>NS5</td>
<td>65.9</td>
<td>47.4</td>
<td>49.8</td>
</tr>
<tr>
<td>NS7</td>
<td>NS6</td>
<td>29.3</td>
<td>27.6</td>
<td>27.8</td>
</tr>
<tr>
<td>NS7</td>
<td>NS7</td>
<td>3.4</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>NS7</td>
<td>NS8</td>
<td>59.8</td>
<td>52.4</td>
<td>53.6</td>
</tr>
<tr>
<td>NS7</td>
<td>NS9</td>
<td>77.9</td>
<td>68.9</td>
<td>70.3</td>
</tr>
<tr>
<td>NS7</td>
<td>NS10</td>
<td>67.1</td>
<td>63.6</td>
<td>64.1</td>
</tr>
<tr>
<td>NS7</td>
<td>NS11</td>
<td>76.4</td>
<td>71.8</td>
<td>72.3</td>
</tr>
<tr>
<td>NS7</td>
<td>NS12</td>
<td>91.1</td>
<td>71.1</td>
<td>74.4</td>
</tr>
<tr>
<td>NS7</td>
<td>NS13</td>
<td>48.9</td>
<td>46.0</td>
<td>46.4</td>
</tr>
<tr>
<td>NS7</td>
<td>NS14</td>
<td>53.9</td>
<td>52.4</td>
<td>52.4</td>
</tr>
<tr>
<td>NS7</td>
<td>NS15</td>
<td>21.9</td>
<td>20.4</td>
<td>20.6</td>
</tr>
<tr>
<td>NS7</td>
<td>NS16</td>
<td>29.2</td>
<td>25.5</td>
<td>25.8</td>
</tr>
<tr>
<td>NS7</td>
<td>NS17</td>
<td>38.9</td>
<td>29.9</td>
<td>31.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>from</th>
<th>to</th>
<th>max</th>
<th>min</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS9</td>
<td>NS5</td>
<td>39.9</td>
<td>38.3</td>
<td>38.6</td>
</tr>
<tr>
<td>NS9</td>
<td>NS6</td>
<td>105.3</td>
<td>93.4</td>
<td>95.2</td>
</tr>
<tr>
<td>NS9</td>
<td>NS7</td>
<td>78.1</td>
<td>68.9</td>
<td>70.4</td>
</tr>
<tr>
<td>NS9</td>
<td>NS8</td>
<td>30.6</td>
<td>21.5</td>
<td>22.8</td>
</tr>
<tr>
<td>NS9</td>
<td>NS9</td>
<td>1.8</td>
<td>1.4</td>
<td>1.5</td>
</tr>
<tr>
<td>NS9</td>
<td>NS10</td>
<td>35.5</td>
<td>29.6</td>
<td>30.4</td>
</tr>
<tr>
<td>NS9</td>
<td>NS11</td>
<td>76.8</td>
<td>70.4</td>
<td>71.1</td>
</tr>
<tr>
<td>NS9</td>
<td>NS12</td>
<td>70.4</td>
<td>62.0</td>
<td>63.3</td>
</tr>
<tr>
<td>NS9</td>
<td>NS13</td>
<td>117.8</td>
<td>106.9</td>
<td>108.9</td>
</tr>
<tr>
<td>NS9</td>
<td>NS14</td>
<td>122.2</td>
<td>113.5</td>
<td>114.6</td>
</tr>
<tr>
<td>NS9</td>
<td>NS15</td>
<td>93.9</td>
<td>88.4</td>
<td>89.2</td>
</tr>
<tr>
<td>NS9</td>
<td>NS16</td>
<td>81.4</td>
<td>77.9</td>
<td>78.4</td>
</tr>
<tr>
<td>NS9</td>
<td>NS17</td>
<td>44.6</td>
<td>41.6</td>
<td>42.1</td>
</tr>
<tr>
<td>NS10</td>
<td>NS5</td>
<td>58.8</td>
<td>50.8</td>
<td>51.9</td>
</tr>
<tr>
<td>NS10</td>
<td>NS6</td>
<td>92.9</td>
<td>87.9</td>
<td>88.7</td>
</tr>
<tr>
<td>NS10</td>
<td>NS7</td>
<td>67.8</td>
<td>63.7</td>
<td>64.4</td>
</tr>
<tr>
<td>NS10</td>
<td>NS8</td>
<td>61.2</td>
<td>55.3</td>
<td>56.9</td>
</tr>
<tr>
<td>NS10</td>
<td>NS9</td>
<td>31.8</td>
<td>29.6</td>
<td>29.8</td>
</tr>
<tr>
<td>NS10</td>
<td>NS10</td>
<td>2.1</td>
<td>1.4</td>
<td>1.6</td>
</tr>
<tr>
<td>NS10</td>
<td>NS11</td>
<td>84.9</td>
<td>76.1</td>
<td>77.4</td>
</tr>
<tr>
<td>NS10</td>
<td>NS12</td>
<td>40.5</td>
<td>35.9</td>
<td>36.3</td>
</tr>
<tr>
<td>NS10</td>
<td>NS13</td>
<td>84.3</td>
<td>81.1</td>
<td>81.4</td>
</tr>
<tr>
<td>NS10</td>
<td>NS14</td>
<td>94.4</td>
<td>87.2</td>
<td>88.3</td>
</tr>
<tr>
<td>NS10</td>
<td>NS15</td>
<td>63.7</td>
<td>62.2</td>
<td>62.3</td>
</tr>
<tr>
<td>NS10</td>
<td>NS16</td>
<td>93.8</td>
<td>85.9</td>
<td>87.2</td>
</tr>
<tr>
<td>NS10</td>
<td>NS17</td>
<td>48.7</td>
<td>43.5</td>
<td>44.3</td>
</tr>
<tr>
<td>NS11</td>
<td>NS5</td>
<td>37.0</td>
<td>33.9</td>
<td>34.1</td>
</tr>
<tr>
<td>NS11</td>
<td>NS6</td>
<td>102.1</td>
<td>98.4</td>
<td>98.9</td>
</tr>
<tr>
<td>NS11</td>
<td>NS7</td>
<td>79.4</td>
<td>72.6</td>
<td>73.6</td>
</tr>
<tr>
<td>NS11</td>
<td>NS8</td>
<td>70.6</td>
<td>68.3</td>
<td>68.6</td>
</tr>
<tr>
<td>NS11</td>
<td>NS9</td>
<td>70.0</td>
<td>68.3</td>
<td>68.5</td>
</tr>
<tr>
<td>NS11</td>
<td>NS10</td>
<td>94.3</td>
<td>84.4</td>
<td>85.5</td>
</tr>
<tr>
<td>NS11</td>
<td>NS11</td>
<td>2.1</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>NS11</td>
<td>NS12</td>
<td>61.8</td>
<td>57.5</td>
<td>58.0</td>
</tr>
<tr>
<td>NS11</td>
<td>NS13</td>
<td>89.9</td>
<td>89.0</td>
<td>89.0</td>
</tr>
<tr>
<td>NS11</td>
<td>NS14</td>
<td>114.0</td>
<td>108.8</td>
<td>109.8</td>
</tr>
<tr>
<td>NS11</td>
<td>NS15</td>
<td>93.1</td>
<td>89.8</td>
<td>90.1</td>
</tr>
<tr>
<td>NS11</td>
<td>NS16</td>
<td>98.6</td>
<td>94.8</td>
<td>95.5</td>
</tr>
<tr>
<td>NS11</td>
<td>NS17</td>
<td>47.1</td>
<td>45.3</td>
<td>45.4</td>
</tr>
</tbody>
</table>
Table 2
NSFNET Traffic—August 1988
Average one-way delay times

<table>
<thead>
<tr>
<th>One-way delay time</th>
<th>from</th>
<th>to</th>
<th>max</th>
<th>min</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSS12 NSS5</td>
<td>38.5</td>
<td>30.6</td>
<td>31.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS6</td>
<td>73.1</td>
<td>66.9</td>
<td>67.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS7</td>
<td>82.9</td>
<td>72.3</td>
<td>75.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS8</td>
<td>74.9</td>
<td>66.5</td>
<td>68.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS9</td>
<td>69.3</td>
<td>62.1</td>
<td>63.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS10</td>
<td>43.3</td>
<td>35.9</td>
<td>36.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS11</td>
<td>67.7</td>
<td>60.6</td>
<td>61.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS12</td>
<td>1.9</td>
<td>1.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS13</td>
<td>50.2</td>
<td>48.6</td>
<td>48.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS14</td>
<td>56.8</td>
<td>55.2</td>
<td>55.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS15</td>
<td>95.4</td>
<td>89.2</td>
<td>90.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS16</td>
<td>102.0</td>
<td>94.9</td>
<td>96.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS12 NSS17</td>
<td>51.1</td>
<td>45.6</td>
<td>46.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS5</td>
<td>77.9</td>
<td>72.5</td>
<td>73.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS6</td>
<td>23.7</td>
<td>21.4</td>
<td>21.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS7</td>
<td>51.3</td>
<td>46.0</td>
<td>46.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS8</td>
<td>105.5</td>
<td>95.0</td>
<td>96.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS9</td>
<td>129.7</td>
<td>107.0</td>
<td>110.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS10</td>
<td>92.9</td>
<td>81.1</td>
<td>82.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS11</td>
<td>90.0</td>
<td>89.2</td>
<td>89.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS12</td>
<td>50.6</td>
<td>48.6</td>
<td>48.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS13</td>
<td>1.9</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS14</td>
<td>48.8</td>
<td>46.4</td>
<td>46.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS15</td>
<td>65.1</td>
<td>62.8</td>
<td>63.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS16</td>
<td>67.8</td>
<td>61.5</td>
<td>62.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS13 NSS17</td>
<td>78.0</td>
<td>73.0</td>
<td>73.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>One-way delay time</th>
<th>from</th>
<th>to</th>
<th>max</th>
<th>min</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSS14 NSS5</td>
<td>83.8</td>
<td>78.9</td>
<td>79.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS6</td>
<td>29.7</td>
<td>28.2</td>
<td>28.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS7</td>
<td>55.2</td>
<td>52.4</td>
<td>52.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS8</td>
<td>111.5</td>
<td>101.4</td>
<td>102.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS9</td>
<td>118.4</td>
<td>113.6</td>
<td>114.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS10</td>
<td>94.2</td>
<td>87.3</td>
<td>87.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS11</td>
<td>121.3</td>
<td>110.3</td>
<td>111.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS12</td>
<td>56.5</td>
<td>55.3</td>
<td>55.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS13</td>
<td>53.7</td>
<td>46.2</td>
<td>47.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS14</td>
<td>2.2</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS15</td>
<td>57.3</td>
<td>56.0</td>
<td>56.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS16</td>
<td>72.8</td>
<td>67.8</td>
<td>68.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS14 NSS17</td>
<td>83.5</td>
<td>79.8</td>
<td>80.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>One-way delay time</th>
<th>from</th>
<th>to</th>
<th>max</th>
<th>min</th>
<th>avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSS15 NSS5</td>
<td>74.0</td>
<td>64.3</td>
<td>65.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS6</td>
<td>46.9</td>
<td>44.6</td>
<td>44.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS7</td>
<td>25.3</td>
<td>20.5</td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS8</td>
<td>78.2</td>
<td>69.2</td>
<td>70.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS9</td>
<td>92.9</td>
<td>88.3</td>
<td>88.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS10</td>
<td>73.6</td>
<td>62.2</td>
<td>63.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS11</td>
<td>96.6</td>
<td>88.8</td>
<td>89.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS12</td>
<td>95.7</td>
<td>87.9</td>
<td>89.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS13</td>
<td>69.8</td>
<td>62.8</td>
<td>63.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS14</td>
<td>57.0</td>
<td>56.1</td>
<td>56.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS15</td>
<td>2.0</td>
<td>1.5</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS16</td>
<td>46.8</td>
<td>42.3</td>
<td>42.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS15 NSS17</td>
<td>49.6</td>
<td>47.7</td>
<td>47.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS5</td>
<td>84.1</td>
<td>72.5</td>
<td>74.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS6</td>
<td>48.9</td>
<td>43.0</td>
<td>43.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS7</td>
<td>27.9</td>
<td>25.5</td>
<td>25.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS8</td>
<td>70.9</td>
<td>62.7</td>
<td>63.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS9</td>
<td>80.8</td>
<td>77.9</td>
<td>78.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS10</td>
<td>92.3</td>
<td>86.0</td>
<td>86.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS11</td>
<td>97.9</td>
<td>94.0</td>
<td>94.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS12</td>
<td>103.5</td>
<td>93.4</td>
<td>95.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS13</td>
<td>63.2</td>
<td>61.5</td>
<td>61.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS14</td>
<td>70.3</td>
<td>67.7</td>
<td>68.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS15</td>
<td>44.8</td>
<td>42.3</td>
<td>42.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS16</td>
<td>2.4</td>
<td>1.4</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS16 NSS17</td>
<td>55.0</td>
<td>53.0</td>
<td>53.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS5</td>
<td>23.3</td>
<td>20.4</td>
<td>20.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS6</td>
<td>57.1</td>
<td>55.1</td>
<td>55.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS7</td>
<td>32.2</td>
<td>30.7</td>
<td>30.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS8</td>
<td>32.9</td>
<td>24.9</td>
<td>25.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS9</td>
<td>44.4</td>
<td>41.6</td>
<td>42.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS10</td>
<td>54.1</td>
<td>43.4</td>
<td>44.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS11</td>
<td>49.2</td>
<td>44.4</td>
<td>44.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS12</td>
<td>54.4</td>
<td>43.7</td>
<td>45.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS13</td>
<td>79.4</td>
<td>73.1</td>
<td>73.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS14</td>
<td>83.6</td>
<td>79.8</td>
<td>80.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS15</td>
<td>49.7</td>
<td>47.6</td>
<td>47.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS16</td>
<td>55.8</td>
<td>52.9</td>
<td>53.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS17 NSS17</td>
<td>1.7</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
# Table 3

## NSFNET Significant Network Events

August 1988

Outage classifications:
- **Class 1:** Full node outage
- **Class 2:** Partial node outage with impact to additional nodes

<table>
<thead>
<tr>
<th>DATE</th>
<th>PROBLEM</th>
<th>RESOLUTION</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NSS #5 Pittsburgh Supercomputer Center / PSCNET</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 01</td>
<td>PSP-5-13 &amp; PSP-5-17 down temporarily</td>
<td>Almaden cards changed</td>
<td>2</td>
</tr>
<tr>
<td>August 11</td>
<td>All machines down for 40min.</td>
<td>RCP rebooted</td>
<td>1</td>
</tr>
<tr>
<td>August 09</td>
<td>IDNX link down for 2hrs.20min.</td>
<td>Trunk card swapped</td>
<td>1</td>
</tr>
<tr>
<td>August 19</td>
<td>All machines down for 2hrs.10min.</td>
<td>MCI switching circuits</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>All Machines down for 2hrs.5min.</td>
<td>MCI switching circuits</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>All machines down for 45min.</td>
<td>MCI switching circuits</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ann Arbor to Pittsburgh link down 5hrs.20min.</td>
<td>Bad repeater</td>
<td>2</td>
</tr>
<tr>
<td><strong>NSS #6 San Diego Supercomputer Center / SDSCNET</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 04</td>
<td>All machines down for 40min.</td>
<td>RCP rebooted</td>
<td>1</td>
</tr>
<tr>
<td><strong>NSS #7 National Center for Atmospheric Research / NCAR</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 01</td>
<td>PSP-7-12 down for 19hrs.</td>
<td>Hard drive replaced</td>
<td>2</td>
</tr>
<tr>
<td>August 20</td>
<td>All machines down for 4hrs.35min.</td>
<td>Fiber break</td>
<td>1</td>
</tr>
<tr>
<td><strong>NSS #8 John Von Neumann National Supercomputer Center / JVNCNET</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 06</td>
<td>All machines down 4hrs.30min.</td>
<td>Power outage-construction</td>
<td>1</td>
</tr>
<tr>
<td>August 08</td>
<td>All machines down temporarily</td>
<td>Power outage-power co.</td>
<td>1</td>
</tr>
<tr>
<td>August 08</td>
<td>PSP-8-11 down 23hrs.30min</td>
<td>PSP rebooted</td>
<td>2</td>
</tr>
<tr>
<td>August 17</td>
<td>All machines down 3hrs.45min.</td>
<td>Electrical storm</td>
<td>1</td>
</tr>
<tr>
<td>August 22</td>
<td>All machines down 1hr.</td>
<td>Generator problems</td>
<td>1</td>
</tr>
<tr>
<td>August 25</td>
<td>All machines down 3hrs.40min</td>
<td>Electrical storm</td>
<td>1</td>
</tr>
</tbody>
</table>

**NSS #9 University of Maryland College Park, MD / SURANET**

Impacted by JVNC Power Outages
<table>
<thead>
<tr>
<th>DATE</th>
<th>PROBLEM</th>
<th>RESOLUTION</th>
<th>CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 30</td>
<td>PSP-10-12 down 5hrs.</td>
<td>PSP rebooted</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS #11</td>
<td>Rice University Houston, TX / SESQUINET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 04</td>
<td>All machines down 1hr.</td>
<td>Sliding cable locks repaired</td>
<td>1</td>
</tr>
<tr>
<td>August 31</td>
<td>PSP-11-13 down 9hrs.</td>
<td>PSP rebooted</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS #12</td>
<td>National Center for Supercomputer Applications / NCSA</td>
<td>No disk space</td>
<td></td>
</tr>
<tr>
<td>August 10</td>
<td>All machines down 1hr.15min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS #13</td>
<td>Stanford University Palo Alto, CA / BARRNET</td>
<td>No Major Problems in August</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS #14</td>
<td>University of Washington Seattle, WA / NORTHWESTNET</td>
<td>MCI replaced a link part</td>
<td>1</td>
</tr>
<tr>
<td>August 18</td>
<td>All machines down 5hrs.20min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS #15</td>
<td>University of Utah Salt Lake City, UT / WESTNET</td>
<td>Fiber break</td>
<td>1</td>
</tr>
<tr>
<td>August 20</td>
<td>All machines down 4hrs.35min.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS #16</td>
<td>University of Nebraska-Lincoln Lincoln, NE / MIDNET</td>
<td>Disk controller replaced</td>
<td>1</td>
</tr>
<tr>
<td>August 04</td>
<td>PSP-16-10 was down 3hrs.</td>
<td>Scheduled power outage</td>
<td>1</td>
</tr>
<tr>
<td>August 06</td>
<td>All machines down 9hrs.</td>
<td>Fiber break</td>
<td>1</td>
</tr>
<tr>
<td>August 13</td>
<td>All machines down 3hrs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August 20</td>
<td>All machines down 4hrs.35min.</td>
<td>Fiber break</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS #17</td>
<td>University of Michigan Ann Arbor, MI / MERIT</td>
<td>PSP rebooted</td>
<td>2</td>
</tr>
<tr>
<td>August 15</td>
<td>PSP-17-14 down temporarily</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
California Internet Federation Participants

BARRNet
CERFNET
California State University
Los Nettos
NASA
San Diego Supercomputer Center
State of California - Department of Water Resources
University of California
California Internet Federation

The California Internet Federation of computer network organizations has the purpose of providing coordination and support of educational and research networking in California. California is recognized as a leader in high technology. To maintain this leadership, however, California's educational and research institutions require the communication tools to share information, resources and ideas. Isolated facilities can no longer compete in today's fast paced age of information. The California Internet Federation has been formed to insure that high quality communication tools are available for education and research to keep California in its position of leadership in these areas.

California Internet Federation Objectives

1) Coordinate interconnection of educational and research networks in California. Areas of coordination include:
   a) Design of cost-effective and reliable interconnection among these computer networks.
   b) Assist with agreements among network administrations in support of interconnections.
   c) Implementation of connections and routing strategies.
   d) Management schemes for the connection of interconnected networks.

2) Provide coordination for the connection of California networks with national and international networks.

3) Support of educational and research networking by promoting:
   a) Use of standards and compatibility of networks.
   b) The understanding of internetwork technologies.
   c) Dissemination of information about resources available via the internet.
   d) Development of new resources available via the internet.
   e) Collaboration between private and public sectors.

4) Increase visibility of internetworking and demonstrate its importance to California.
### California Internet Federation Meeting
#### August 23, 1988

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Network connections</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clark, Ray</td>
<td>CSU Chancellor</td>
<td>CSUNET</td>
<td><a href="mailto:rclark@calstate.bitnet">rclark@calstate.bitnet</a></td>
</tr>
<tr>
<td>Cooling, Mike</td>
<td>CSU Sacto</td>
<td>CSUNET</td>
<td>cssexb!<a href="mailto:cooling@ucdavis.edu">cooling@ucdavis.edu</a></td>
</tr>
<tr>
<td>Darling, Gary</td>
<td>State DWR</td>
<td>DWR nets</td>
<td>caldwr!<a href="mailto:gary@ucdavis.edu">gary@ucdavis.edu</a></td>
</tr>
<tr>
<td>DeJarnett, Steve</td>
<td>Cal Poly SLO</td>
<td>CSUNET</td>
<td><a href="mailto:steve@polyslo.calpoly.edu">steve@polyslo.calpoly.edu</a></td>
</tr>
<tr>
<td>Estrada, Susan</td>
<td>SDSC</td>
<td>CERFNET</td>
<td><a href="mailto:estradas@sds.sdsc.edu">estradas@sds.sdsc.edu</a></td>
</tr>
<tr>
<td>Hobby, Russ</td>
<td>UC Davis</td>
<td>BARRNet</td>
<td><a href="mailto:rdhobby@ucdavis.edu">rdhobby@ucdavis.edu</a></td>
</tr>
<tr>
<td>Jones, Bill</td>
<td>NSI/NASA Ames</td>
<td>NSI/NASA</td>
<td><a href="mailto:jones@nsipo.nasa.gov">jones@nsipo.nasa.gov</a></td>
</tr>
<tr>
<td>Liu, Mei-ling</td>
<td>Cal Poly SLO</td>
<td>CSUNET</td>
<td><a href="mailto:mliu@polyslo.calpoly.edu">mliu@polyslo.calpoly.edu</a></td>
</tr>
<tr>
<td>Love, E. Paul</td>
<td>SDSC</td>
<td>CERFNET</td>
<td><a href="mailto:loveep@sds.sdsc.edu">loveep@sds.sdsc.edu</a></td>
</tr>
<tr>
<td>Lynch, Clifford</td>
<td>UCOP</td>
<td>UCNET</td>
<td><a href="mailto:lynch@postgres.berkeley.edu">lynch@postgres.berkeley.edu</a></td>
</tr>
<tr>
<td>Madden, Jim</td>
<td>UC San Diego</td>
<td>CERFNET</td>
<td><a href="mailto:madden@ucsd.edu">madden@ucsd.edu</a></td>
</tr>
<tr>
<td>Neuman, Gerald K</td>
<td>SDSC</td>
<td>CERFNET</td>
<td><a href="mailto:gkn@sds.sdsc.edu">gkn@sds.sdsc.edu</a></td>
</tr>
<tr>
<td>Olikainen, Ari</td>
<td>RIACS/NASA</td>
<td>BARRNet</td>
<td><a href="mailto:ari@riacs.edu">ari@riacs.edu</a></td>
</tr>
<tr>
<td>Postel, Jon</td>
<td>USC/ISI</td>
<td>Los Nettos</td>
<td><a href="mailto:postel@isi.edu">postel@isi.edu</a></td>
</tr>
<tr>
<td>Prue, Walt</td>
<td>USC/ISI</td>
<td>Los Nettos</td>
<td><a href="mailto:prue@isi.edu">prue@isi.edu</a></td>
</tr>
<tr>
<td>Scott, Greg</td>
<td>UC Santa Cruz</td>
<td>BARRNet</td>
<td><a href="mailto:greg@ucscm.ucsc.edu">greg@ucscm.ucsc.edu</a></td>
</tr>
<tr>
<td>Smith, Dick</td>
<td>CSU Sacto</td>
<td>CSUNET</td>
<td>lll-crg!csusac!dsmith</td>
</tr>
<tr>
<td>Taylor, Chris</td>
<td>CSU Chancellor</td>
<td>CSUNET</td>
<td><a href="mailto:1gtlftc@calstate.bitnet">1gtlftc@calstate.bitnet</a></td>
</tr>
<tr>
<td>Tomcheck, Dave</td>
<td>UC Irvine</td>
<td>CERFNET</td>
<td><a href="mailto:tomcheck@uci.bitnet">tomcheck@uci.bitnet</a></td>
</tr>
<tr>
<td>Walker, David</td>
<td>UC Irvine</td>
<td>CERFNET</td>
<td><a href="mailto:dhwalker@uci.bitnet">dhwalker@uci.bitnet</a></td>
</tr>
<tr>
<td>Wasley, David</td>
<td>UC Berkeley</td>
<td>BARRNet</td>
<td><a href="mailto:dlw@violet.berkeley.edu">dlw@violet.berkeley.edu</a></td>
</tr>
<tr>
<td>Wills, Dave</td>
<td>UCOP</td>
<td>UCNET</td>
<td></td>
</tr>
<tr>
<td>Yundt, Bill</td>
<td>Stanford</td>
<td>BARRNet</td>
<td><a href="mailto:gd.why@forsythe.stanford.edu">gd.why@forsythe.stanford.edu</a></td>
</tr>
</tbody>
</table>
## California Internet Federation Meeting
### September 28, 1988

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Network connections.</th>
<th>Email Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Darling, Gary</td>
<td>State DWR</td>
<td>DWR nets</td>
<td>caldwr!<a href="mailto:gary@ucdavis.edu">gary@ucdavis.edu</a></td>
</tr>
<tr>
<td>Ferrin, Tom</td>
<td>UCSF</td>
<td>BARRNet</td>
<td><a href="mailto:tef@cgl.ucsf.edu">tef@cgl.ucsf.edu</a></td>
</tr>
<tr>
<td>Fink, Robert</td>
<td>LBL</td>
<td>BARRNet</td>
<td><a href="mailto:rlfink@lbl.gov">rlfink@lbl.gov</a></td>
</tr>
<tr>
<td>Griffiths, Darren</td>
<td>LBL</td>
<td>BARRNet</td>
<td><a href="mailto:dagg@lbl.gov">dagg@lbl.gov</a></td>
</tr>
<tr>
<td>Harel, Elie</td>
<td>UCLA</td>
<td>UCNET</td>
<td><a href="mailto:aceh0@uclaais.bitnet">aceh0@uclaais.bitnet</a></td>
</tr>
<tr>
<td>Hobby, Russ</td>
<td>UC Davis</td>
<td>BARRNet</td>
<td><a href="mailto:rdhobby@ucdavis.edu">rdhobby@ucdavis.edu</a></td>
</tr>
<tr>
<td>Jones, Bill</td>
<td>NSI/NASA Ames</td>
<td>NSI/NASA</td>
<td><a href="mailto:jones@nsipo.nasa.gov">jones@nsipo.nasa.gov</a></td>
</tr>
<tr>
<td>Lynch, Clifford</td>
<td>UCOP</td>
<td>UCNET</td>
<td><a href="mailto:lynch@postgres.berkeley.edu">lynch@postgres.berkeley.edu</a></td>
</tr>
<tr>
<td>Madden, Jim</td>
<td>UC San Diego</td>
<td>CERFNET</td>
<td><a href="mailto:madden@ucsd.edu">madden@ucsd.edu</a></td>
</tr>
<tr>
<td>Neuman, Gerald K</td>
<td>SDSC</td>
<td>CERFNET</td>
<td><a href="mailto:gkn@sds.sdsc.edu">gkn@sds.sdsc.edu</a></td>
</tr>
<tr>
<td>Ollikainen, Ari</td>
<td>RIACS/NASA</td>
<td>NASA Nets</td>
<td><a href="mailto:ari@riacs.edu">ari@riacs.edu</a></td>
</tr>
<tr>
<td>Prue, Walt</td>
<td>USC/ISI</td>
<td>Los Nettos</td>
<td><a href="mailto:prue@isi.edu">prue@isi.edu</a></td>
</tr>
<tr>
<td>Reese, David</td>
<td>CSU Chancellor</td>
<td>CSUNET</td>
<td><a href="mailto:1gtlfct@calstate.bitnet">1gtlfct@calstate.bitnet</a></td>
</tr>
<tr>
<td>Scott, Greg</td>
<td>UC Santa Cruz</td>
<td>BARRNet</td>
<td><a href="mailto:greg@ucscm.ucsc.edu">greg@ucscm.ucsc.edu</a></td>
</tr>
<tr>
<td>Stefferud, Einar</td>
<td>NMA-Northrop</td>
<td>UCNET</td>
<td><a href="mailto:stef@nrtc.northrop.com">stef@nrtc.northrop.com</a></td>
</tr>
<tr>
<td>Taylor, Chris</td>
<td>CSU Chancellor</td>
<td>CSUNET</td>
<td><a href="mailto:1gtlfct@calstate.bitnet">1gtlfct@calstate.bitnet</a></td>
</tr>
<tr>
<td>Walker, David</td>
<td>UC Irvine</td>
<td>CERFNET</td>
<td><a href="mailto:dhwalker@uci.bitnet">dhwalker@uci.bitnet</a></td>
</tr>
<tr>
<td>Wasley, David</td>
<td>UC Berkeley</td>
<td>BARRNet</td>
<td><a href="mailto:dlw@violet.berkeley.edu">dlw@violet.berkeley.edu</a></td>
</tr>
<tr>
<td>Wills, Dave</td>
<td>UCOP</td>
<td>UCNET</td>
<td></td>
</tr>
<tr>
<td>Yundt, Bill</td>
<td>Stanford</td>
<td>BARRNet</td>
<td><a href="mailto:gd.why@forsythe.stanford.edu">gd.why@forsythe.stanford.edu</a></td>
</tr>
</tbody>
</table>