
1

MPLS Traffic Engineering

RSVP Extensions

Lou Berger (lberger@fore.com)

December, 1998

Orlando IETF

2

MPLS-TE RSVP Extensions
• Extensions motivated by MPLS framework and

traffic engineering requirements
– Extensions documented in

• draft-ietf-mpls-framework-02.txt

• draft-ietf-mpls-rsvp-lsp-tunnel-00.txt

• Extensions presented at last IETF
– Tunnel identification - Label Object

– Tunnel parameter negotiation - Session-Attribute Obj.

– Routing policy distribution - Explicit-Route Obj

– Routing debugging information - Record-Route Obj.

– Initial scalability improvements - Aggregate Message

• Not covered at last IETF
– Additional scalability improvements - Refresh extensions

3

Relevant MPLS Requirements
• Scalability

– Must be able to support O(n^2)
Label Switched Paths

• For non-merging solutions

• N is number of edge routers
– 100 edge routers ==>

O(10,000) reservations

– 300 edge router s ==>
O(100,000) reservations

• All sessions will be unicast

• Multicast is for further study

– Key RSVP implications
• Refresh message rate

• Processing overhead per refresh
message

• Network resiliency
– Rapid failure detection

– Bounded setup/teardown
time

• Key RSVP implication
– Latency of end-to-end state

synchronization

– Reliability of messages

4

Issue: Refresh Message Processing
• Senders must regenerate messages for each installed state

• Receivers must parse whole message
– To determine if new message or refresh

• Limits scaling to large number of sessions
– Parsing requirements and message rates are issues

– Each Path and Resv must be independently refreshed

– Example:
With 100,000 sessions and a 30 second refresh interval
3,333 messages per second must be generated and
3,333 messages per second must be parsed

• Longer refresh intervals are not a cure!
– Increasing refresh interval hurts failure detection and recovery

5

Issue: Latency and Reliability

• Setup issue
– Worst case setup time is tied to

Number of hops, Refresh Interval, Loss rate

– Recovering from lost setup message tied to refresh rate
• Loss may occur at every hop -- In both directions

• Multiple losses are possible

• Teardown issue
– Recovering from lost Tear messages is tied to refresh rate

• State must be timed-out

– Resources remain unavailable to other users

• Shorter refresh intervals are not a cure!
– Decreasing refresh interval increases refresh processing overhead

RTR B RTR CRTR ASrc Dest

Path

Resv

x

x

x

6

Proposed Solution:
Message_ID Extension

• Composed of two new objects
– MESSAGE_ID and MESSAGE_ID ACK

– Both may be carried in any type of RSVP message

– MESSAGE_ID ACK Object may also be carried in ACK message

• Objects used to support:
– Reduced processing for refresh messages

via a 24-bit identification of represented state

– Reliable message delivery
via requested acknowledgements

– Refresh elimination
for desired messages

• Requires notification from routing on route change

• Requires other neighbor failure detection mechanism
such as information from routing or HELLO Extension

7

MESSAGE_ID (continued)
• Object Format:

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Flags | Message ID |

+-+

• Message_ID field
– A sender generated value that uniquely identifies message

• Flags
– ACK_Desired - indicates sender willing to accept an ACK

– Last_Refresh - indicates that message will not be refreshed
• Once acknowledged

• ACK Flags (for MESSAGE_ID ACK Objects)
– No_Refresh - indicates refreshes are not needed for message

• Extra refresh required to maintain state in face of message loss
– Tear must be reliably sent if receiver not expecting refreshes

8

MESSAGE_ID
Multicast Restrictions

• Avoiding ACK implosion
– Responders wait a random interval prior to acknowledging

• When number of next-hops not known
– Should only expect a single Ack

• Means “fast retransmit” until 1st Ack received

– MUST ignore No_Refresh flag
• Means using standard RSVP refresh processing

• When new receivers cannot be identified
– Should only expect a single Ack

– MUST ignore No_Refresh flag

• When all receivers do not request No_Refresh
– MUST ignore No_Refresh flag

9

Proposed Solution:
Hello Extension

• Used to detect failures in neighboring RSVP
nodes
– Required when not using RSVP’s refresh processing

– When no other mechanism available

• Composed of:
– STATE_SET Object

– Hello message

– Hello Ack message

• Hello and Hello Ack message each allow
message receiver to detect reset/failure of sender

10

Hello Extension (continued)
Supports:

• Failure detection
– Via no response and reset of “instance” value

• Use of Hello failure detection by one side or both
– All implementations supporting MESSAGE_ID MUST be able to

answer Hellos but are not required to generate them

• Independent failure detection rates
– Messages will end up being generated by sender with lower rate

• Explicit support for multiple interfaces using same IP
address
– “Instance” values passed on a per LIH basis

– Aimed at explicit support for unnumbered links and RSVP tunnels
• Unnumbered links could be supported by single “instance” value

coupled with physical link information

– Open issue: should explicit LIH support be removed?

11

Compatibility
Both extensions are fully backward compatible:

• MESSAGE_ID Class uses value of form 10bbbbbb
– Per RFC 2205 classes with values of this form must be ignored and

not forwarded by nodes not supporting the class.

– Non-supporting receivers will silently ignore object

– Senders will see no ACK and therefore continue with standard
RSVP refresh processing

• Hello related Class uses values of form 0bbbbbbb
– Per RFC 2205, this is an “Unknown Object Class”

– Non-supporting receivers will ignore message or respond with
error

– Senders will see no Hello ACK, and therefor are prohibited from
setting No_Refresh flag.

