MPLS Traffic Engineering

RSVP Extensions

Lou Berger (lberger@fore.com) December, 1998 Orlando IETF

MPLS-TE RSVP Extensions

- Extensions motivated by MPLS framework and traffic engineering requirements
 - Extensions documented in
 - draft-ietf-mpls-framework-02.txt
 - draft-ietf-mpls-rsvp-lsp-tunnel-00.txt
- Extensions presented at last IETF
 - Tunnel identification
 - Tunnel parameter negotiation
 - Routing policy distribution
 - Routing debugging information
 - Initial scalability improvements
- Not covered at last IETF
 - Additional scalability improvements

- Label Object
- Session-Attribute Obj.
- Explicit-Route Obj
- Record-Route Obj.
- Aggregate Message

- Refresh extensions²

Relevant MPLS Requirements

- Scalability
 - Must be able to support O(n^2) Label Switched Paths
 - For non-merging solutions
 - N is number of edge routers
 - 100 edge routers ==> O(10,000) reservations
 - 300 edge router s ==> O(100,000) reservations
 - All sessions will be unicast
 - Multicast is for further study
 - Key RSVP implications
 - Refresh message rate
 - Processing overhead per refresh message

- Network resiliency
 - Rapid failure detection
 - Bounded setup/teardown time
- Key RSVP implication
 - Latency of end-to-end state synchronization
 - Reliability of messages

Issue: Refresh Message Processing

- Senders must regenerate messages for each installed state
- Receivers must parse whole message
 - To determine if new message or refresh
- Limits scaling to large number of sessions
 - Parsing requirements and message rates are issues
 - Each Path and Resv must be independently refreshed
 - Example:

With 100,000 sessions and a 30 second refresh interval

3,333 messages per second must be generated and

3,333 messages per second must be parsed

- Longer refresh intervals are not a cure!
 - Increasing refresh interval hurts failure detection and recovery

Issue: Latency and Reliability

- Setup issue
 - Worst case setup time is tied to Number of hops, Refresh Interval, Loss rate
 - Recovering from lost setup message tied to refresh rate
 - Loss may occur at every hop -- In both directions
 - Multiple losses are possible
- Teardown issue
 - Recovering from lost Tear messages is tied to refresh rate
 - State must be timed-out
 - Resources remain unavailable to other users
- Shorter refresh intervals are not a cure!
 - Decreasing refresh interval increases refresh processing overhead

5

Proposed Solution: Message_ID Extension

- Composed of two new objects
 - MESSAGE_ID and MESSAGE_ID ACK
 - Both may be carried in any type of RSVP message
 - MESSAGE_ID ACK Object may also be carried in ACK message
- Objects used to support:
 - Reduced processing for refresh messages
 via a 24-bit identification of represented state
 - Reliable message delivery via requested acknowledgements
 - Refresh elimination for desired messages
 - Requires notification from routing on route change
 - Requires other neighbor failure detection mechanism such as information from routing or HELLO Extension

MESSAGE_ID (continued)

• Object Format:

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 4 5 6 7 8 9 0 1 5

- Message_ID field
 - A sender generated value that uniquely identifies message
- Flags
 - ACK_Desired indicates sender willing to accept an ACK
 - Last_Refresh
 indicates that message will not be refreshed
 - Once acknowledged
- ACK Flags (for MESSAGE_ID ACK Objects)
 - No_Refresh
 indicates refreshes are not needed for message
- Extra refresh required to maintain state in face of message loss
 - Tear must be reliably sent if receiver not expecting refreshes

MESSAGE_ID Multicast Restrictions

- Avoiding ACK implosion
 - Responders wait a random interval prior to acknowledging
- When number of next-hops not known
 - Should only expect a single Ack
 - Means "fast retransmit" until 1st Ack received
 - MUST ignore No_Refresh flag
 - Means using standard RSVP refresh processing
- When new receivers cannot be identified
 - Should only expect a single Ack
 - MUST ignore No_Refresh flag
- When all receivers do not request No_Refresh
 - MUST ignore No_Refresh flag

Proposed Solution: Hello Extension

- Used to detect failures in neighboring RSVP nodes
 - Required when not using RSVP's refresh processing
 - When no other mechanism available
- Composed of:
 - STATE_SET Object
 - Hello message
 - Hello Ack message
- Hello and Hello Ack message each allow message receiver to detect reset/failure of sender

Hello Extension (continued)

Supports:

- Failure detection
 - Via no response and reset of "instance" value
- Use of Hello failure detection by one side or both
 - All implementations supporting MESSAGE_ID MUST be able to answer Hellos but are not required to generate them
- Independent failure detection rates
 - Messages will end up being generated by sender with lower rate
- Explicit support for multiple interfaces using same IP address
 - "Instance" values passed on a per LIH basis
 - Aimed at explicit support for unnumbered links and RSVP tunnels
 - Unnumbered links could be supported by single "instance" value coupled with physical link information
 - Open issue: should explicit LIH support be removed?

Compatibility

Both extensions are fully backward compatible:

- MESSAGE_ID Class uses value of form 10bbbbbb
 - Per RFC 2205 classes with values of this form must be ignored and not forwarded by nodes not supporting the class.
 - Non-supporting receivers will silently ignore object
 - Senders will see no ACK and therefore continue with standard RSVP refresh processing
- Hello related Class uses values of form 0bbbbbbb
 - Per RFC 2205, this is an "Unknown Object Class"
 - Non-supporting receivers will ignore message or respond with error
 - Senders will see no Hello ACK, and therefor are prohibited from setting No_Refresh flag.