Internet Draft Frame Relay Service MIB October 1999 Definitions of Managed Objects for Frame Relay Service October 15, 1999 draft-ietf-frnetmib-frs-mib-08.txt Kenneth Rehbehn Visual Networks krehbehn@visualnetworks.com David Fowler Newbridge Networks davef@newbridge.com Status of this Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet- Drafts as reference material or to cite them other than as ``work in progress.'' The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Abstract This memo defines an extension to the Management Information Base (MIB) for use with network management protocols in TCP/IP-based internets. In particular, it defines objects for managing the frame relay service. Expires April 2000 [Page 1] Internet Draft Frame Relay Service MIB October 1999 When published as an RFC, this document will obsolete RFC 1604. Copyright Notice Copyright (C) The Internet Society (1999). All Rights Reserved. Expires April 2000 [Page 2] Internet Draft Frame Relay Service MIB October 1999 Table of Contents 1 The SNMP Management Framework ................................ 4 2 Overview ..................................................... 6 2.1 Scope of MIB ............................................... 6 2.2 Transiting Multiple Frame Relay Networks ................... 8 2.3 Access Control ............................................. 9 2.4 Frame Relay Service MIB Terminology ........................ 10 2.5 Relation to Other MIBs ..................................... 12 2.5.1 System Group ............................................. 12 2.5.2 Interfaces Table (ifTable, ifXtable) ..................... 12 2.5.3 Stack Table for DS1/E1 Environment ....................... 17 2.5.4 Stack Table for V.35 Environments ........................ 18 2.5.5 The Frame Relay/ATM PVC Service Interworking MIB ......... 19 2.6 Textual Convention Change .................................. 20 3 Object Definitions ........................................... 21 3.1 The Frame Relay Service Logical Port Group ................. 23 3.2 The Frame Relay Management VC Signaling Group .............. 29 3.3 The PVC End-Point Group .................................... 39 3.4 Frame Relay PVC Connection Group ........................... 53 3.5 Frame Relay Accounting Groups .............................. 61 3.6 Frame Relay Network Service TRAPS .......................... 65 3.7 Conformance Information .................................... 66 4 Acknowledgments .............................................. 77 5 References ................................................... 78 6 Security Considerations ...................................... 81 7 Authors' Addresses ........................................... 82 APPENDIX A Update Information .................................. 83 Expires April 2000 [Page 3] Internet Draft Frame Relay Service MIB October 1999 1. The SNMP Management Framework The SNMP Management Framework presently consists of five major components: o An overall architecture, described in RFC 2571 [1]. o Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in STD 16, RFC 1155 [2], STD 16, RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in STD 58, RFC 2578 [5], RFC 2579 [6] and RFC 2580 [7]. o Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in STD 15, RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2572 [11] and RFC 2574 [12]. o Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in STD 15, RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13]. o A set of fundamental applications described in RFC 2573 [14] and the view-based access control mechanism described in RFC 2575 [15]. A more detailed introduction to the current SNMP Management Framework can be found in RFC 2570 [16]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI. This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable Expires April 2000 [Page 4] Internet Draft Frame Relay Service MIB October 1999 information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB. Expires April 2000 [Page 5] Internet Draft Frame Relay Service MIB October 1999 2. Overview These objects are used to manage a frame relay Service. At present, this applies to the following value of the ifType variable in the IF-MIB [26]: frameRelayService (44) This section provides an overview and background of how to use this MIB and other potential MIBs to manage a frame relay service. Figure 1 shows the MIB stack that could be followed for managing a frame relay service. This is only an example and not meant to be inclusive. ____________________________________________________ | | | | | | | | SIP | RFC2427 | | | X.25 MIB | Relay | (no applic.| | | for IW/Encap.| MIB | MIB) | | | | | | | MIB II |-----------------------------------| | | | | ifTable | Frame Relay Service MIB | | ifXTable | | | ifStackTable |___________________________________| | | | | | | Physical Layer MIBs | ATM MIB | | | e.g., DS1/E1 MIB, |---------| | | RS232-like MIB | Phy. | | | | Layer | | | | MIB | |--------------|-------------------------|---------| Figure 1. Frame Relay MIB Architecture 2.1. Scope of MIB The Frame Relay Service MIB supports Customer Network Management (CNM) of a frame relay network service. Through the use of this and other related MIBs, a frame relay service customer's NMS can monitor the customer's UNI/NNI logical ports and PVCs. It provides customers with access to configuration data, performance monitoring information, and Expires April 2000 [Page 6] Internet Draft Frame Relay Service MIB October 1999 fault detection for the delivered frame relay service. As an option, an SNMP agent supporting the Frame Relay Service MIB may allow customer- initiated PVC management operations such as creation, deletion, modification, activation, and deactivation of individual PVCs. However, internal aspects of the network (e.g., switching elements, line cards, and network routing tables) are beyond the scope of this MIB. The Frame Relay Service MIB models all interfaces and PVCs delivered by a frame relay service within a single virtual SNMP system for the purpose of comprehensively representing the customer's frame relay service. The customer's interfaces and PVCs may physically exist on one or more devices within the network topology. An SNMP agent providing support for the Frame Relay Service MIB as well as other appropriate MIBs to model a single virtual frame relay network service is referred to as a Frame Relay Service (FRS) agent. Internal communication mechanisms between the FRS agent and individual devices within the frame relay network delivering the service are implementation specific and beyond the scope of this MIB. The customer's NMS will typically access the SNMP agent implementing the Frame Relay Service MIB over a frame relay permanent virtual connection (PVC). SNMP access over a frame relay PVC is achieved through the use of SNMP over UDP over IP encapsulated in Frame Relay according to STD 55, RFC2427 and ITU X.36 Annex D [23]. Alternate access mechanisms and SNMP agent implementations are possible. This MIB will NOT be implemented on user equipment (e.g., DTE). Such devices are managed using the Frame Relay DTE MIB (RFC2115[18]). However, concentrators may use the Frame Relay Service MIB instead of the Frame Relay DTE MIB. This MIB does not define managed objects for the physical layer. Existing physical layer MIBs (e.g., DS1 MIB) and MIB II will be used as needed in FRS Agent implementations. This MIB supports frame relay PVCs. This MIB may be extended at a later time to handle frame relay SVCs. Expires April 2000 [Page 7] Internet Draft Frame Relay Service MIB October 1999 A switch implementation may support this MIB for the purpose of configuration and control of the frame relay service beyond the scope of traditional customer network management applications. A number of objects (e.g. frLportTypeAdmin) support administrative actions that impact the operation of frame relay switch equipment in the network. This is reflected in the differences between the two MIB compliance modules: o the frame relay service compliance module (frnetservCompliance), and o the frame relay switch compliance module (frnetSwitchCompliance). The frame relay service compliance module does not support the administrative control objects used for switch management. 2.2. Transiting Multiple Frame Relay Networks This MIB is only used to manage a single frame relay service offering from one network service provider. Therefore, if a customer PVC traverses multiple networks, then the customer must poll a different FRS agent within each frame relay network to retrieve the end-to-end view of service. Figure 2 illustrates a customer ("User B") NMS accessing FRS agents in three different frame relay networks (I, J, and K). Expires April 2000 [Page 8] Internet Draft Frame Relay Service MIB October 1999 +-------------------------------------+ | Customer Network Management Station | | (SNMP based) | +-------------------------------------+ ^ ^ ^ | | | | | | UNI | NNI | NNI | UNI | ^ | ^ | ^ | +-----------+ | +-----------+ | +-----------+ | | | | | | | | | | | Originating | | FR | | | FR | | | FR | | Terminating +--------+ | | Network I | | | Network J | | | Network K | | +--------+ | | | | | | | | | | | | | | | |---| |---| |---| |---| User B | | | | | | | | | | | | | | | | //////////////////////////////////////////////////////////// | | | | | | | | | | | | | | | +--------+ | +-----------+ | +-----------+ | +-----------+ | +--------+ | | | | | | | | | PVC Segment 1 | PVC Segment 2 | PVC Segment 3 | |<------------->|<------------->|<------------->| | | | Multi-network PVC | |<--------------------------------------------->| | NNI = Network-to Network Interface | UNI = User-to-Network Interface Figure 2. Multi-network PVC 2.3. Access Control A frame relay network is shared amongst many frame relay subscribers. Each subscriber will only have access to their information (e.g., information with respect to their interfaces and PVCs). The FRS agent SHOULD provide instance level granularity for MIB views. Expires April 2000 [Page 9] Internet Draft Frame Relay Service MIB October 1999 2.4. Frame Relay Service MIB Terminology Access Channel - An access channel generically refers to the DS1/E1 or DS3/E3-based UNI access channel or NNI access channel across which frame relay data transits. An access channel is the access pathway for a single stream of user data. Within a given T1 line, an access channel can denote any one of the following: o Unchannelized T1 - the entire T1 line is considered an access channel. Each access channel is comprised of 24 T1 time slots. o Channelized T1 - an access channel is any one of 24 channels. Each access channel is comprised of a single T1 time slot. o Fractional T1 - an access channel is a grouping of N T1 time slots (NX56/64 Kbps, where N = 1-23 T1 Time slots per FT1 Access Channel) that may be assigned in consecutive or non-consecutive order. Within a given E1 line, a channel can denote any one of the following: o Unchannelized E1 - the entire E1 line is considered a single access channel. Each access channel is comprised of 31 E1 time slots. o Channelized E1 - an access channel is any one of 31 channels. Each access channel is comprised of a single E1 time slot. o Fractional E1 - an access channel is a grouping of N E1 time slots (NX64 Kbps, where N = 1-30 E1 time slots per FE1 access channel) that may be assigned in consecutive or non-consecutive order. Within a given unformatted line, the entire unformatted line is considered an access channel. Examples include RS-232, V.35, V.36 and X.21 (non- switched), and unframed Ei (G.703 without G.704). Access Rate - The data rate of the access channel, expressed in bits/second. The speed of the user access channel determines how rapidly the end user can inject data into the network. Bc - The Committed Burst Size (Bc) is the maximum amount of subscriber data (expressed in bits) that the network agrees to Expires April 2000 [Page 10] Internet Draft Frame Relay Service MIB October 1999 transfer, under normal conditions, during a time interval Tc. Be - The Excess Burst Size (Be) is the maximum amount of subscriber data (expressed in bits) in excess of Bc that the network will attempt to deliver during the time interval Tc. This data (Be) is delivered in general with a lower probability than Bc. CIR - The Committed Information Rate (CIR) is the subscriber data rate (expressed in bits/second) that the network commits to deliver under normal network conditions. CIR is averaged over the time interval Tc (CIR = Bc/Tc). DLCI - Data Link Connection Identifier Logical Port - This term is used to model the frame relay "interface" on a device. NNI - Network to Network Interface Permanent Virtual Connection (PVC) - A virtual connection that has its end-points and bearer capabilities defined at subscription time. Time slot (E1) - An octet within the 256-bit information field in each E1 frame is defined as a time slot. Time slots are position sensitive within the 256-bit information field. Fractional E1 service is provided in contiguous or non-contiguous time slot increments. Time slot (T1) - An octet within the 192-bit information field in each T1 frame is defined as a time slot. Time slots are position sensitive within the 192-bit information field. Fractional T1 service is provided in contiguous or non-contiguous time slot increments. UNI - User to Network Interface N391 - Full status (status of all PVCs) polling counter N392 - Error threshold N393 - Monitored events count T391 - Link integrity verification polling timer T392 - Polling verification timer nT3 - Status enquiry timer Expires April 2000 [Page 11] Internet Draft Frame Relay Service MIB October 1999 nN3 - Maximum status enquiry counter 2.5. Relation to Other MIBs 2.5.1. System Group Use the System Group of the SNMPv2-MIB [27] to describe the Frame Relay Service (FRS) agent. The FRS agent may be monitoring many frame relay devices in one network. The System Group does not describe frame relay devices monitored by the FRS agent. sysDescr: ASCII string describing the FRS agent. Can be up to 255 characters long. This field is generally used to indicate the network providers identification and type of service offered. sysObjectID: Unique OBJECT IDENTIFIER (OID) for the FRS agent. sysUpTime: Clock in the FRS agent; TimeTicks in 1/100s of a second. Elapsed type since the FRS agent came on line. sysContact: Contact for the FRS agent. ASCII string of up to 255 characters. sysName: Domain name of the FRS agent, for example, acme.com sysLocation: Location of the FRS agent. ASCII string of up to 255 characters. sysServices: Services of the managed device. The value "2", which implies that the frame relay network is providing a subnetwork level service, is recommended. 2.5.2. Interfaces Table (ifTable, ifXtable) This specifies how the Interfaces Group defined in the IF MIB [26] shall be used for the management of frame relay based interfaces, and in conjunction with the Frame Relay Service MIB module. This memo assumes the interpretation of the evolution of the Interfaces group to be in Expires April 2000 [Page 12] Internet Draft Frame Relay Service MIB October 1999 accordance with: "The interfaces table (ifTable) contains information on the managed resource's interfaces. Each sub- layer below the internetwork layer of a network interface is considered an interface." Thus, the ifTable allows the following frame relay-based interfaces to be represented as table entries: - Frame relay interfaces in the frame relay equipment (e.g., switches, routers or networks) with frame relay interfaces. This level is concerned with generic frame counts and not with individual virtual connections. In accordance with the guidelines of ifTable, frame counts per virtual connection are not covered by ifTable, and are considered interface specific and covered in the Frame Relay Service MIB module. In order to interrelate the ifEntries properly, the Interfaces Stack Group shall be supported. Some specific interpretations of ifTable for frame relay follow. Object Use for the generic Frame Relay layer ====== ============================================= ifIndex Each frame relay port is represented by an ifEntry. ifDescr Description of the frame relay interface. ASCII string describing the UNI/NNI logical port. Can be up to 255 characters long. ifType The value allocated for Frame Relay Service is equal to 44. ifMtu Set to maximum frame size in octets for this frame relay logical port. ifSpeed Peak bandwidth in bits per second available for use. This could be the speed of the logical port and not the access rate. Actual user information transfer rate (i.e., access rate) of the UNI or NNI logical port in bits per second (this is not the clocking speed). For example, it is 1,536,000 bits per second for a DS1-based UNI/NNI logical port and 1,984,000 bits per second for an E1-based UNI/NNI logical port. Expires April 2000 [Page 13] Internet Draft Frame Relay Service MIB October 1999 ifPhysAddress The primary address for this logical port assigned by the frame relay interface provider. An octet string of zero length if no address is used for this logical port. ifAdminStatus The desired administrative status of the frame relay logical port. ifOperStatus The current operational status of the Frame Relay UNI or NNI logical port. ifLastChange The value of sysUptime at the last re-initialization of the logical port. The value of sysUpTime at the time the logical port entered its current operational state. If the current state was entered prior to the last re-initialization of the local network management subsystem, then this object contains a zero value. ifInOctets The number of received octets. This counter only counts octets from the beginning of the frame relay header field to the end of user data. ifInUcastPkts The number of received unerrored, unicast frames. ifInDiscards The number of received frames discarded. Specifically, frames discarded due to ingress buffer congestion and traffic policing. ifInErrors The number of received frames that are discarded because of an error. Specifically, frames that are too long or too short, frames that are not a multiple of 8 bits in length, frames with an invalid or unrecognized DLCI, frames with an abort sequence, frames with improper flag delimitation, and frame that fail FCS. ifInUnknownProtos The number of packets discarded because of an unknown or unsupported protocol. For Frame Relay Service interfaces, this counter will Expires April 2000 [Page 14] Internet Draft Frame Relay Service MIB October 1999 always be zero. ifOutOctets The number of transmitted octets. This counter only counts octets from the beginning of the frame relay header field to the end of user data. ifOutUcastpkts The number of unerrored, unicast frames sent. ifOutDiscards The number of frames discarded in the egress direction. Possible reasons are as follows: policing, congestion. ifOutErrors The number of frames discarded in the egress direction because of an error. Specifically, frames that are aborted due to a transmitter underrun. ifName This variable is not applicable for Frame Relay Service interfaces, therefore, this variable contains a zero-length string. ifInMulticastPkts The number of received unerrored, multicast frames. ifInBroadcastPkts This variable is not applicable for Frame Relay Service interfaces, therefore, this counter is always zero. ifOutMulticastPkts The number of sent unerrored, multicast frames. ifOutBroadcastPkts This variable is not applicable for Frame Relay Service interfaces, therefore, this counter is always zero. ifHCInOctets Only used for DS3-based (and greater) Frame Relay logical ports. The number of received octets. This counter only counts octets from the beginning of the frame relay header field to the end of user data. ifHCOutOctets Only used for DS3-based (and greater) Frame Relay logical ports. The number of transmitted octets. This counter only counts Expires April 2000 [Page 15] Internet Draft Frame Relay Service MIB October 1999 octets from the beginning of the frame relay header field to the end of user data. ifLinkUpDownTrapEnable Set to true(1). It is recommended that the underlying physical layer traps be disabled since both are not required. Traps are enabled at the frame relay service layer specifically because PVC traps are not to be sent if the frame relay interface fails. Without a linkUp/linkDown trap, the management station would receive no notification of the failure. ifHighSpeed Set to the user data rate of the frame relay logical port in millions of bits per second. If the user data rate is less than 1 Mbps, then this value is zero. ifPromiscuousMode Set to false(2). ifConnectorPresent Set to false(2). Frame relay network service interfaces support the Interface Stack Group. Frame relay network service interfaces do not support any other groups or objects in the Interfaces group of the IF MIB. Expires April 2000 [Page 16] Internet Draft Frame Relay Service MIB October 1999 2.5.3. Stack Table for DS1/E1 Environment This section describes by example how to use ifStackTable to represent the relationship of frame relay service to ds0 and ds0Bundles with ds1 interfaces. [20] Example: A frame relay service is being carried on 4 ds0s of a ds1. +---------------------+ | Frame Relay Service | +---------------------+ | +---------------------+ | ds0Bundle | +---------------------+ | | | | +---+ +---+ +---+ +---+ |ds0| |ds0| |ds0| |ds0| +---+ +---+ +---+ +---+ | | | | +---------------------+ | ds1 | +---------------------+ The assignment of the index values could for example be: ifIndex Description 1 FrameRelayService (type 44) 2 ds0Bundle (type 82) 3 ds0 #1 (type 81) 4 ds0 #2 (type 81) 5 ds0 #3 (type 81) 6 ds0 #4 (type 81) 7 ds1 (type 18) The ifStackTable is then used to show the relationships between the various interfaces. ifStackTable Entries HigherLayer LowerLayer 0 1 1 2 2 3 2 4 2 5 2 6 Expires April 2000 [Page 17] Internet Draft Frame Relay Service MIB October 1999 3 7 4 7 5 7 6 7 7 0 In the case where the frame relay service is using a single ds0, then the ds0Bundle is not required. +---------------------+ | Frame Relay Service | +---------------------+ | +---+ |ds0| +---+ | +---------------------+ | ds1 | +---------------------+ The assignment of the index values could for example be: ifIndex Description 1 FrameRelayService (type 44) 2 ds0 (type 81) 3 ds1 (type 18) The ifStackTable is then used to show the relationships between the various interfaces. ifStackTable Entries HigherLayer LowerLayer 0 1 1 2 2 3 3 0 2.5.4. Stack Table for V.35 Environments This section describes by example how to use ifStackTable to represent the relationship of frame relay service with V.35 interfaces. Expires April 2000 [Page 18] Internet Draft Frame Relay Service MIB October 1999 +---------------------+ | Frame Relay Service | +---------------------+ | +---------------------+ | v35 | +---------------------+ An example of index values in this case could be: ifIndex Description 1 FrameRelayService (type 44) 2 v35 (type 33) Note type 33 (RS232-like MIB) is used instead of type 45 (V.35). V35 does not pertain to this environment. The ifStackTable is then used to show the relationships between the various interfaces. ifStackTable Entries HigherLayer LowerLayer 0 1 1 2 2 0 2.5.5. The Frame Relay/ATM PVC Service Interworking MIB Connections between two frame relay endpoints are represented with an entry in the frPVCConnectTable of this MIB. Both endpoints are represented with rows in the frPVCEndptTable. In contrast, a connection that spans frame relay and ATM endpoints is represented with an entry in the frAtmIwfConnectionTable of the FR/ATM PVC Service Interworking MIB defined in [28]. The object frPVCEndptConnKind identifies the type of connection and thus the applicable cross-connection table. The object frPVCEndptConnectIdentifier contains a value used as an index into the applicable cross-connection table. In the case of the frPVCConnectTable the value is applied with the frPVCConnectIndex object. In the case of the frAtmIwfConnectionTable the value is Expires April 2000 [Page 19] Internet Draft Frame Relay Service MIB October 1999 applied with the frAtmIwfConnIndex object. 2.6. Textual Convention Change Version 1 of the Frame Relay Service MIB contains MIB objects defined with the (now obsolete) DisplayString textual convention. In version 2 of this MIB, the syntax for these objects has been updated to use the (now preferred) SnmpAdminString textual convention. The working group realizes that this change is not strictly supported by SMIv2. In our judgment, the alternative of deprecating the old objects and defining new objects would have a more adverse impact on backward compatibility and interoperability, given the particular semantics of these objects. Expires April 2000 [Page 20] Internet Draft Frame Relay Service MIB October 1999 3. Object Definitions FRNETSERV-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, transmission, Counter32, Integer32 FROM SNMPv2-SMI TimeStamp, RowStatus FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF InterfaceIndex, ifIndex FROM IF-MIB SnmpAdminString FROM SNMP-FRAMEWORK-MIB; frnetservMIB MODULE-IDENTITY LAST-UPDATED "9910150000Z" ORGANIZATION "IETF Frame Relay Service MIB Working Group" CONTACT-INFO "Kenneth Rehbehn Postal: Visual Networks 2092 Gaither Road Rockville, MD USA 20850 Tel: +1 301 296 2325 Fax: +1 301 296 2302 E-mail: krehbehn@visualnetworks.com David Fowler Postal: Newbridge Networks Corporation 600 March Road Kanata, Ontario, Canada K2K 2E6 Tel: +1 613 591 3600 Fax: +1 613 599 3667 E-mail: davef@newbridge.com" DESCRIPTION "The MIB module to describe generic objects for Frame Relay Network Service." -- -- Revision History -- REVISION "9910150000Z" DESCRIPTION "Published as RFC xxxx Expires April 2000 [Page 21] Internet Draft Frame Relay Service MIB October 1999 o Add frPVCEndptConnKind object to select FR/ATM Service IWF o Overview re-written for clarity o Clarify role of system group o Removed indexes from NOTIFICATIONS o Add R/W switch-specific compliance module o Add R/W administration objects for switch configuration o Remove reference to obsolete I-D on CNM o Added an instance of frPVCEndptRcvdSigStatus for each endpoint to the Connect Status Change Trap o Additional PVC counters added o Added frPVCConnectUserName and frPVCConnectProviderName o Added MIB objects in support for FRF.12 fragmentation" REVISION "9311161200Z" DESCRIPTION "Published as RFC 1604." ::= { transmission 44 } frnetservObjects OBJECT IDENTIFIER ::= { frnetservMIB 1 } frnetservTraps OBJECT IDENTIFIER ::= { frnetservMIB 2 } frnetservTrapsPrefix OBJECT IDENTIFIER ::= { frnetservTraps 0 } Expires April 2000 [Page 22] Internet Draft Frame Relay Service MIB October 1999 -- The Frame Relay Service Logical Port Group -- the Frame Relay Logical Port Group -- This table is an interface specific addendum -- to the generic ifTable from MIB-II. frLportTable OBJECT-TYPE SYNTAX SEQUENCE OF FrLportEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Frame Relay Logical Port Information table." ::= { frnetservObjects 1 } frLportEntry OBJECT-TYPE SYNTAX FrLportEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the Frame Relay Logical Port Information table." INDEX { ifIndex } ::= { frLportTable 1 } FrLportEntry ::= SEQUENCE { frLportNumPlan INTEGER, frLportContact SnmpAdminString, frLportLocation SnmpAdminString, frLportType INTEGER, frLportAddrDLCILen INTEGER, frLportVCSigProtocol INTEGER, frLportVCSigPointer OBJECT IDENTIFIER, frLportDLCIIndexValue Integer32, frLportTypeAdmin INTEGER, frLportVCSigProtocolAdmin INTEGER, frLportVCSigPointerAdmin OBJECT IDENTIFIER, frLportFragControl INTEGER, frLportFragSize Integer32 } frLportNumPlan OBJECT-TYPE SYNTAX INTEGER { other(1), e164(2), Expires April 2000 [Page 23] Internet Draft Frame Relay Service MIB October 1999 x121(3), none(4) } MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the network address numbering plan for this UNI/NNI logical port. The network address is the object ifPhysAddress. The value none implies that there is no ifPhysAddress. The FRS agent will return an octet string of zero length for ifPhysAddress. The value other means that an address has been assigned to this interface, but the numbering plan is not enumerated here." ::= { frLportEntry 1 } frLportContact OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(0..255)) MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the network contact for this UNI/NNI logical port." ::= { frLportEntry 2 } frLportLocation OBJECT-TYPE SYNTAX SnmpAdminString (SIZE(0..255)) MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the frame relay network location for this UNI/NNI logical port." ::= { frLportEntry 3 } frLportType OBJECT-TYPE SYNTAX INTEGER { uni(1), nni(2) } MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the type of Expires April 2000 [Page 24] Internet Draft Frame Relay Service MIB October 1999 network interface for this logical port." ::= { frLportEntry 4 } frLportAddrDLCILen OBJECT-TYPE SYNTAX INTEGER { twoOctets10Bits(1), threeOctets10Bits(2), threeOctets16Bits(3), fourOctets17Bits(4), fourOctets23Bits(5) } UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Q.922 Address field length and DLCI length for this UNI/NNI logical port." REFERENCE "Q.922 [25]" ::= { frLportEntry 5 } frLportVCSigProtocol OBJECT-TYPE SYNTAX INTEGER { none(1), lmi(2), ansiT1617D(3), ansiT1617B(4), ccittQ933A(5) } MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Local In-Channel Signaling Protocol that is used for this frame relay UNI/NNI logical port." ::= { frLportEntry 6 } frLportVCSigPointer OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object is used as a pointer to the table that contains the Local In-Channel Signaling Protocol parameters and errors for this Expires April 2000 [Page 25] Internet Draft Frame Relay Service MIB October 1999 UNI/NNI logical port. See the Frame Relay Management VC Signaling Parameters and Errors Group." ::= { frLportEntry 7 } frLportDLCIIndexValue OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "This object contains an appropriate value to be used for frPVCEndptDLCIIndex when creating entries in the frPVCEndptTable. The value 0 indicates that no unassigned entries are available. To obtain the frPVCEndptDLCIIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of this object. After each retrieval, the agent should modify the value to the next unassigned index." ::= { frLportEntry 8 } frLportTypeAdmin OBJECT-TYPE SYNTAX INTEGER { uni(1), nni(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object desired identifies the type of network interface for this logical port." ::= { frLportEntry 9 } frLportVCSigProtocolAdmin OBJECT-TYPE SYNTAX INTEGER { none(1), lmi(2), ansiT1617D(3), ansiT1617B(4), ccittQ933A(5) } MAX-ACCESS read-write STATUS current DESCRIPTION Expires April 2000 [Page 26] Internet Draft Frame Relay Service MIB October 1999 "The value of this object identifies the desired Local In-Channel Signaling Protocol that is used for this frame relay UNI/NNI logical port. This value must be made the active protocol as soon as possible on the device." ::= { frLportEntry 10 } frLportVCSigPointerAdmin OBJECT-TYPE SYNTAX OBJECT IDENTIFIER MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object is used as the desired value of a pointer to the table that contains the Local In-Channel Signaling Protocol parameters and errors for this UNI/NNI logical port. See the Frame Relay Management VC Signaling Parameters and Errors Group. This value must be made active as soon as possible on the device." ::= { frLportEntry 11 } frLportFragControl OBJECT-TYPE SYNTAX INTEGER { on(1), off(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "This object controls the transmission and reception of fragmentation frames for this UNI or NNI interface. on(1) Frames are fragmented using the interface fragmentation format Note: The customer side of the interface must also be configured to fragment frames. off(2) Frames are not fragmented using the interface fragmentation format." REFERENCE "FRF.12 [21]" DEFVAL { off } ::= { frLportEntry 12 } frLportFragSize OBJECT-TYPE SYNTAX Integer32 (0..8184) UNITS "Octets" Expires April 2000 [Page 27] Internet Draft Frame Relay Service MIB October 1999 MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object is the size in octets of the maximum size of each fragment to be sent when fragmenting. This object is only used by the fragmentation transmitter, and the two sides of the interface may differ. The fragment size includes the octets for the frame relay header, the UI octet, the NLPID, the fragmentation header, and the fragment payload. If frLportFragControl is set to off, this value should be zero. The fragment size range is derived as follows: 8192 - max 4 octet header - max 4 octet FCS" REFERENCE "FRF.12 [21]" DEFVAL { 0 } ::= { frLportEntry 13 } Expires April 2000 [Page 28] Internet Draft Frame Relay Service MIB October 1999 -- the Frame Relay Management VC Signaling Group -- This Group contains managed objects for the -- Local In-Channel Signaling Parameters and -- for signaling errors. frMgtVCSigTable OBJECT-TYPE SYNTAX SEQUENCE OF FrMgtVCSigEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Frame Relay Management VC Signaling Parameters and Errors table." ::= { frnetservObjects 2 } frMgtVCSigEntry OBJECT-TYPE SYNTAX FrMgtVCSigEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the Frame Relay Management VC Signaling Parameters Errors table." INDEX { ifIndex } ::= { frMgtVCSigTable 1 } FrMgtVCSigEntry ::= SEQUENCE { frMgtVCSigProced INTEGER, frMgtVCSigUserN391 INTEGER, frMgtVCSigUserN392 INTEGER, frMgtVCSigUserN393 INTEGER, frMgtVCSigUserT391 INTEGER, frMgtVCSigNetN392 INTEGER, frMgtVCSigNetN393 INTEGER, frMgtVCSigNetT392 INTEGER, frMgtVCSigNetnN4 INTEGER, frMgtVCSigNetnT3 INTEGER, frMgtVCSigUserLinkRelErrors Counter32, frMgtVCSigUserProtErrors Counter32, frMgtVCSigUserChanInactive Counter32, frMgtVCSigNetLinkRelErrors Counter32, frMgtVCSigNetProtErrors Counter32, frMgtVCSigNetChanInactive Counter32, frMgtVCSigProcedAdmin INTEGER, frMgtVCSigUserN391Admin INTEGER, Expires April 2000 [Page 29] Internet Draft Frame Relay Service MIB October 1999 frMgtVCSigUserN392Admin INTEGER, frMgtVCSigUserN393Admin INTEGER, frMgtVCSigUserT391Admin INTEGER, frMgtVCSigNetN392Admin INTEGER, frMgtVCSigNetN393Admin INTEGER, frMgtVCSigNetT392Admin INTEGER, frMgtVCSigNetnT3Admin INTEGER } frMgtVCSigProced OBJECT-TYPE SYNTAX INTEGER { u2nnet(1), bidirect(2), u2nuser(3) } MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Local In-Channel Signaling Procedure that is used for this UNI/NNI logical port. Bidirectional procedures implies that both user-side and network-side procedures are used." ::= { frMgtVCSigEntry 1 } frMgtVCSigUserN391 OBJECT-TYPE SYNTAX INTEGER (1..255) UNITS "Polls" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the User-side N391 full status polling cycle value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated and an attempt to read will result in the noSuchInstance exception response." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" DEFVAL { 6 } ::= { frMgtVCSigEntry 2 } frMgtVCSigUserN392 OBJECT-TYPE SYNTAX INTEGER (1..10) Expires April 2000 [Page 30] Internet Draft Frame Relay Service MIB October 1999 UNITS "Events" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the User-side N392 error threshold value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" DEFVAL { 3 } ::= { frMgtVCSigEntry 3 } frMgtVCSigUserN393 OBJECT-TYPE SYNTAX INTEGER (1..10) UNITS "Events" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the User-side N393 monitored events count value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" DEFVAL { 4 } ::= { frMgtVCSigEntry 4 } frMgtVCSigUserT391 OBJECT-TYPE SYNTAX INTEGER (5..30) UNITS "Seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the User-side T391 link integrity verification polling timer value for this UNI/NNI logical port. If the logical port is not performing user-side procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" DEFVAL { 10 } ::= { frMgtVCSigEntry 5 } Expires April 2000 [Page 31] Internet Draft Frame Relay Service MIB October 1999 frMgtVCSigNetN392 OBJECT-TYPE SYNTAX INTEGER (1..10) UNITS "Events" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Network- side N392 error threshold value (nN2 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17], LMI [24]" DEFVAL { 3 } ::= { frMgtVCSigEntry 6 } frMgtVCSigNetN393 OBJECT-TYPE SYNTAX INTEGER (1..10) UNITS "Events" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Network- side N393 monitored events count value (nN3 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17], LMI [24]" DEFVAL { 4 } ::= { frMgtVCSigEntry 7 } frMgtVCSigNetT392 OBJECT-TYPE SYNTAX INTEGER (5..30) UNITS "Seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Network- side T392 polling verification timer value (nT2 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated." Expires April 2000 [Page 32] Internet Draft Frame Relay Service MIB October 1999 REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17], LMI [24]" DEFVAL { 15 } ::= { frMgtVCSigEntry 8 } frMgtVCSigNetnN4 OBJECT-TYPE SYNTAX INTEGER (5..5) UNITS "Events" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Network- side nN4 maximum status enquires received value for this UNI/NNI logical port. If the logical port is not performing network-side procedures or is not performing LMI procedures, then this object is not instantiated. This object applies only to LMI and always has a value of 5." REFERENCE "LMI [24]" ::= { frMgtVCSigEntry 9 } frMgtVCSigNetnT3 OBJECT-TYPE SYNTAX INTEGER (5 | 10 | 15 | 20 | 25 | 30) UNITS "Seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the Network- side nT3 timer (for nN4 status enquires received) value for this UNI/NNI logical port. If the logical port is not performing network-side procedures or is not performing LMI procedures, then this object is not instantiated. This object applies only to LMI." REFERENCE "LMI [24]" DEFVAL { 20 } ::= { frMgtVCSigEntry 10 } frMgtVCSigUserLinkRelErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Errors" Expires April 2000 [Page 33] Internet Draft Frame Relay Service MIB October 1999 MAX-ACCESS read-only STATUS current DESCRIPTION "The number of user-side local in-channel signaling link reliability errors (i.e., non- receipt of Status/Status Enquiry messages or invalid sequence numbers in a Link Integrity Verification Information Element) for this UNI/NNI logical port. If the logical port is not performing user-side procedures, then this object is not instantiated." ::= { frMgtVCSigEntry 11 } frMgtVCSigUserProtErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Errors" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of user-side local in-channel signaling protocol errors (i.e., protocol discriminator, unnumbered information, message type, call reference, and mandatory information element errors) for this UNI/NNI logical port. If the logical port is not performing user-side procedures, then this object is not instantiated." ::= { frMgtVCSigEntry 12 } frMgtVCSigUserChanInactive OBJECT-TYPE SYNTAX Counter32 UNITS "Events" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times the user-side channel was declared inactive (i.e., N392 errors in N393 events) for this UNI/NNI logical port. If the logical port is not performing user-side procedures, then this object is not instantiated." ::= { frMgtVCSigEntry 13 } frMgtVCSigNetLinkRelErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Errors" MAX-ACCESS read-only Expires April 2000 [Page 34] Internet Draft Frame Relay Service MIB October 1999 STATUS current DESCRIPTION "The number of network-side local in-channel signaling link reliability errors (i.e., non- receipt of Status/Status Enquiry messages or invalid sequence numbers in a Link Integrity Verification Information Element) for this UNI/NNI logical port." ::= { frMgtVCSigEntry 14 } frMgtVCSigNetProtErrors OBJECT-TYPE SYNTAX Counter32 UNITS "Errors" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of network-side local in-channel signaling protocol errors (i.e., protocol discriminator, message type, call reference, and mandatory information element errors) for this UNI/NNI logical port." ::= { frMgtVCSigEntry 15 } frMgtVCSigNetChanInactive OBJECT-TYPE SYNTAX Counter32 UNITS "Events" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of times the network-side channel was declared inactive (i.e., N392 errors in N393 events) for this UNI/NNI logical port." ::= { frMgtVCSigEntry 16 } frMgtVCSigProcedAdmin OBJECT-TYPE SYNTAX INTEGER { u2nnet(1), bidirect(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired Local In-Channel Signaling Procedure that is used for this UNI/NNI logical port. The UNI/NNI Expires April 2000 [Page 35] Internet Draft Frame Relay Service MIB October 1999 logical port can be performing only user-to- network network-side procedures or bidirectional procedures. Bidirectional procedures implies that both user-side and network-side procedures are used." ::= { frMgtVCSigEntry 17 } frMgtVCSigUserN391Admin OBJECT-TYPE SYNTAX INTEGER (1..255) UNITS "Polls" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired User-side N391 full status polling cycle value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" ::= { frMgtVCSigEntry 18 } frMgtVCSigUserN392Admin OBJECT-TYPE SYNTAX INTEGER (1..10) UNITS "Events" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired User-side N392 error threshold value for this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" ::= { frMgtVCSigEntry 19 } frMgtVCSigUserN393Admin OBJECT-TYPE SYNTAX INTEGER (1..10) UNITS "Events" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired User-side N393 monitored events count value for Expires April 2000 [Page 36] Internet Draft Frame Relay Service MIB October 1999 this UNI/NNI logical port. If the logical port is not performing user-side (bidirectional) procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" ::= { frMgtVCSigEntry 20 } frMgtVCSigUserT391Admin OBJECT-TYPE SYNTAX INTEGER (5..30) UNITS "Seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired User-side T391 link integrity verification polling timer value for this UNI/NNI logical port. If the logical port is not performing user-side procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17]" ::= { frMgtVCSigEntry 21 } frMgtVCSigNetN392Admin OBJECT-TYPE SYNTAX INTEGER (1..10) UNITS "Events" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired Network-side N392 error threshold value (nN2 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17], LMI [24]" ::= { frMgtVCSigEntry 22 } frMgtVCSigNetN393Admin OBJECT-TYPE SYNTAX INTEGER (1..10) UNITS "Events" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired Expires April 2000 [Page 37] Internet Draft Frame Relay Service MIB October 1999 Network-side N393 monitored events count value (nN3 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17], LMI [24]" ::= { frMgtVCSigEntry 23 } frMgtVCSigNetT392Admin OBJECT-TYPE SYNTAX INTEGER (5..30) UNITS "Seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired Network-side T392 polling verification timer value (nT2 for LMI) for this UNI/NNI logical port. If the logical port is not performing network-side procedures, then this object is not instantiated." REFERENCE "Q.933 Annex A [22], T1.617 Annex D [17], LMI [24]" ::= { frMgtVCSigEntry 24 } frMgtVCSigNetnT3Admin OBJECT-TYPE SYNTAX INTEGER (5 | 10 | 15 | 20 | 25 | 30) UNITS "Seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "The value of this object identifies the desired Network-side nT3 timer (for nN4 status enquires received) value for this UNI/NNI logical port. If the logical port is not performing network-side procedures or is not performing LMI procedures, then this object is not instantiated. This object applies only to LMI." REFERENCE "LMI [24]" ::= { frMgtVCSigEntry 25 } Expires April 2000 [Page 38] Internet Draft Frame Relay Service MIB October 1999 -- The PVC End-Point Group -- This table is used to identify the traffic parameters -- for a bi-directional PVC segment end-point, and it also -- provides statistics for a PVC segment -- end-point. -- A PVC segment end-point is identified by a UNI/NNI -- logical port index value and DLCI index value. -- If the frame relay service provider allows -- the frame relay CNM subscriber to create, modify -- or delete PVCs using SNMP, then this table is used -- to identify and reserve -- the requested traffic parameters of each -- PVC segment end-point. The Connection table -- is used to "connect" the end-points together. -- Not all implementations will support the -- capability of creating/modifying/deleting -- PVCs using SNMP as a feature of frame relay -- CNM service. -- Uni-directional PVCs are modeled with zero -- valued traffic parameters in one of the -- directions (In or Out direction) in this table. -- To create a PVC, the following procedures -- shall be followed: -- 1). Create the entries for the PVC segment endpoints in the -- frPVCEndptTable by specifying the traffic parameters -- for the bi-directional PVC segment endpoints. -- As shown in the figure, a point-to-point PVC has -- two endpoints, thus two entries in this table. -- Uni-directional PVCs are modeled -- with zero valued traffic parameters in one -- direction; all the `In' direction parameters -- for one frame relay PVC End-point or -- all the `Out' direction -- parameters for the other frame relay PVC -- End-point. Expires April 2000 [Page 39] Internet Draft Frame Relay Service MIB October 1999 -- In ____________________________________ Out -- >>>>>>| |>>>>>>>> -- ______| Frame Relay Network |__________ -- Out | | In -- <<<<<<| |<<<<<<<< -- |___________________________________| -- Frame Relay PVC Frame Relay -- End-point PVC End-point -- 2). Go to the Frame Relay Connection Group. -- -- The Frame Relay PVC End-point Table frPVCEndptTable OBJECT-TYPE SYNTAX SEQUENCE OF FrPVCEndptEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Frame Relay PVC End-Point table. This table is used to model a PVC end-point. This table contains the traffic parameters and statistics for a PVC end-point." ::= { frnetservObjects 3 } frPVCEndptEntry OBJECT-TYPE SYNTAX FrPVCEndptEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the Frame Relay PVC Endpoint table." INDEX { ifIndex, frPVCEndptDLCIIndex } ::= { frPVCEndptTable 1 } FrPVCEndptEntry ::= SEQUENCE { frPVCEndptDLCIIndex Integer32, frPVCEndptInMaxFrameSize Integer32, frPVCEndptInBc Integer32, frPVCEndptInBe Integer32, frPVCEndptInCIR Integer32, frPVCEndptOutMaxFrameSize Integer32, frPVCEndptOutBc Integer32, frPVCEndptOutBe Integer32, frPVCEndptOutCIR Integer32, Expires April 2000 [Page 40] Internet Draft Frame Relay Service MIB October 1999 frPVCEndptConnectIdentifier Integer32, frPVCEndptRowStatus RowStatus, frPVCEndptRcvdSigStatus INTEGER, frPVCEndptInFrames Counter32, frPVCEndptOutFrames Counter32, frPVCEndptInDEFrames Counter32, frPVCEndptInExcessFrames Counter32, frPVCEndptOutExcessFrames Counter32, frPVCEndptInDiscards Counter32, frPVCEndptInOctets Counter32, frPVCEndptOutOctets Counter32, frPVCEndptInDiscardsDESet Counter32, frPVCEndptInFramesFECNSet Counter32, frPVCEndptOutFramesFECNSet Counter32, frPVCEndptInFramesBECNSet Counter32, frPVCEndptOutFramesBECNSet Counter32, frPVCEndptInCongDiscards Counter32, frPVCEndptInDECongDiscards Counter32, frPVCEndptOutCongDiscards Counter32, frPVCEndptOutDECongDiscards Counter32, frPVCEndptOutDEFrames Counter32, frPVCEndptConnKind INTEGER } frPVCEndptDLCIIndex OBJECT-TYPE SYNTAX Integer32 (16..4194303) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of this object is equal to the DLCI value for this PVC end-point." ::= { frPVCEndptEntry 1 } frPVCEndptInMaxFrameSize OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object is the size in octets of the largest frame relay information field for this PVC end-point in the ingress direction (into the frame relay network). The value of frPVCEndptInMaxFrameSize must be less than or Expires April 2000 [Page 41] Internet Draft Frame Relay Service MIB October 1999 equal to the corresponding ifMtu for this frame relay UNI/NNI logical port." ::= { frPVCEndptEntry 2 } frPVCEndptInBc OBJECT-TYPE SYNTAX Integer32 UNITS "Bits" MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object is equal to the committed burst size (Bc) parameter (measured in bits) for this PVC end-point in the ingress direction (into the frame relay network)." ::= { frPVCEndptEntry 3 } frPVCEndptInBe OBJECT-TYPE SYNTAX Integer32 UNITS "Bits" MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object is equal to the excess burst size (Be) parameter (measured in bits) for this PVC end-point in the ingress direction (into the frame relay network)." ::= { frPVCEndptEntry 4 } frPVCEndptInCIR OBJECT-TYPE SYNTAX Integer32 UNITS "Bits per Second" MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object is equal to the committed information rate (CIR) parameter (measured in bits per second) for this PVC end- point in the ingress direction (into the frame relay network)." ::= { frPVCEndptEntry 5 } frPVCEndptOutMaxFrameSize OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-create Expires April 2000 [Page 42] Internet Draft Frame Relay Service MIB October 1999 STATUS current DESCRIPTION "The value of this object is the size in octets of the largest frame relay information field for this PVC end-point in the egress direction (out of the frame relay network). The value of frPVCEndptOutMaxFrameSize must be less than or equal to the corresponding ifMtu for this frame relay UNI/NNI logical port." ::= { frPVCEndptEntry 6 } frPVCEndptOutBc OBJECT-TYPE SYNTAX Integer32 UNITS "Bits" MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object is equal to the committed burst size (Bc) parameter (measured in bits) for this PVC end-point in the egress direction (out of the frame relay network)." ::= { frPVCEndptEntry 7 } frPVCEndptOutBe OBJECT-TYPE SYNTAX Integer32 UNITS "Bits" MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object is equal to the excess burst size (Be) parameter (measured in bits) for this PVC end-point in the egress direction (out of the frame relay network)." ::= { frPVCEndptEntry 8 } frPVCEndptOutCIR OBJECT-TYPE SYNTAX Integer32 UNITS "Bits per Second" MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object is equal to the committed information rate (CIR) parameter (measured in bits per second) for this PVC end- point in the egress direction (out of the frame Expires April 2000 [Page 43] Internet Draft Frame Relay Service MIB October 1999 relay network)." ::= { frPVCEndptEntry 9 } frPVCEndptConnectIdentifier OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "This object is used to associate PVC end-points as being part of one PVC segment connection. The meaning of this object depends upon the value of frPVCEndptConnKind. In the case of frPVCEndptConnKind set to fr2fr(2), the value of this object is equal to the value of frPVCConnectIndex, which is used as one of the indices into the frPVCConnectTable in the case of a frame relay endpoint cross-connected to another frame relay endpoint. In the case of frPVCEndptConnKind set to fr2AtmServiceIWF(3), the frame relay endpoint is cross-connected to an ATM endpoint through the FR/ATM PVC Service IWF MIB. The value of this object is equal to frAtmIwfConnIndex, which is used as one of the indices into the frAtmIwfConnectionTable. In the case of frPVCEndptConnKind set to none(1), this value should be set to zero. If frPVCEndptConnKind is NOT implemented and a noSuchInstance exception is returned, then a management system MUST assume frPVCEndptConnKind is set to fr2fr(2) when this value is non-zero. The value of this object is provided by the agent, after the associated entries in the frPVCConnectTable have been created." ::= { frPVCEndptEntry 10 } frPVCEndptRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current Expires April 2000 [Page 44] Internet Draft Frame Relay Service MIB October 1999 DESCRIPTION "This object is used to create new rows in this table, modify existing rows, and to delete existing rows. To create a new PVC, the entries for the PVC segment end-points in the frPVCEndptTable must first be created. Next, the frPVCConnectTable is used to associate the frame relay PVC segment end-points. In order for the manager to have the necessary error diagnostics, the frPVCEndptRowStatus object must initially be set to `createAndWait'. While the frPVCEndptRowStatus object is in the `createAndWait' state, the manager can set each columnar object and get the necessary error diagnostics. The frPVCEndptRowStatus object may not be set to `active' unless the following columnar objects exist in this row: frPVCEndptInMaxFrameSize, frPVCEndptInBc, frPVCEndptInBe, frPVCEndptInCIR, frPVCEndptOutMaxFrameSize, frPVCEndptOutBc, frPVCEndptOutBe, and frPVCEndptOutCIR." ::= { frPVCEndptEntry 11 } frPVCEndptRcvdSigStatus OBJECT-TYPE SYNTAX INTEGER { deleted(1), active(2), inactive(3), none(4) } MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the PVC status received via the local in-channel signaling procedures for this PVC end-point. This object is only pertinent for interfaces that perform the bidirectional procedures. Each value has the following meaning: deleted(1): This PVC is not listed in the full status reports received from the user device. The object retains this value for as long as the PVC is not listed in the full status Expires April 2000 [Page 45] Internet Draft Frame Relay Service MIB October 1999 reports active(2): This PVC is reported as active, or operational, by the user device. inactive(3): This PVC is reported as inactive, or non-operational, by the user device. none(4): This interface is only using the network-side in-channel signaling procedures, so this object does not apply." ::= { frPVCEndptEntry 12 } frPVCEndptInFrames OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames received by the network (ingress) for this PVC end-point. This includes any frames discarded by the network due to submitting more than Bc + Be data or due to any network congestion recovery procedures." ::= { frPVCEndptEntry 13 } frPVCEndptOutFrames OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames sent by the network (egress) regardless of whether they are Bc or Be frames for this PVC end-point." ::= { frPVCEndptEntry 14 } frPVCEndptInDEFrames OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION Expires April 2000 [Page 46] Internet Draft Frame Relay Service MIB October 1999 "The number of frames received by the network (ingress) with the DE bit set to (1) for this PVC end-point." ::= { frPVCEndptEntry 15 } frPVCEndptInExcessFrames OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames received by the network (ingress) for this PVC end-point which were treated as excess traffic. Frames which are sent to the network with DE set to zero are treated as excess when more than Bc bits are submitted to the network during the Committed Information Rate Measurement Interval (Tc). Excess traffic may or may not be discarded at the ingress if more than Bc + Be bits are submitted to the network during Tc. Traffic discarded at the ingress is not recorded in frPVCEndptInExcessFrames. Frames which are sent to the network with DE set to one are also treated as excess traffic." ::= { frPVCEndptEntry 16 } frPVCEndptOutExcessFrames OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames sent by the network (egress) for this PVC end-point which were treated as excess traffic. (The DE bit may be set to one.)" ::= { frPVCEndptEntry 17 } frPVCEndptInDiscards OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames received by the the network (ingress) that were discarded due to traffic Expires April 2000 [Page 47] Internet Draft Frame Relay Service MIB October 1999 enforcement for this PVC end-point. Congestion discards are not counted in this object." ::= { frPVCEndptEntry 18 } frPVCEndptInOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets received by the network (ingress) for this PVC end-point. This counter should only count octets from the beginning of the frame relay header field to the end of user data. If the network supporting frame relay can not count octets, then this count should be an approximation." ::= { frPVCEndptEntry 19 } frPVCEndptOutOctets OBJECT-TYPE SYNTAX Counter32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of octets sent by the network (egress) for this PVC end-point. This counter should only count octets from the beginning of the frame relay header field to the end of user data. If the network supporting frame relay can not count octets, then this count should be an approximation." ::= { frPVCEndptEntry 20 } frPVCEndptInDiscardsDESet OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames received by the network (ingress) that were discarded with the DE bit set due to traffic enforcement for this PVC end-point. Congestion discards are not counted in this object." Expires April 2000 [Page 48] Internet Draft Frame Relay Service MIB October 1999 ::= { frPVCEndptEntry 21 } frPVCEndptInFramesFECNSet OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames received by the network (ingress) that have the FECN bit set for this PVC end-point. If the logical port is not performing network-side procedures, then this object is not instantiated." ::= { frPVCEndptEntry 22 } frPVCEndptOutFramesFECNSet OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames sent by the network (egress) that have the FECN bit set for this PVC end- point." ::= { frPVCEndptEntry 23 } frPVCEndptInFramesBECNSet OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames received by the network (ingress) that have the BECN bit set for this PVC end-point. If the logical port is not performing network-side procedures, then this object is not instantiated." ::= { frPVCEndptEntry 24 } frPVCEndptOutFramesBECNSet OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION Expires April 2000 [Page 49] Internet Draft Frame Relay Service MIB October 1999 "The number of frames sent by the network (egress) that have the BECN bit set for this PVC end- point." ::= { frPVCEndptEntry 25 } frPVCEndptInCongDiscards OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames received by the network (ingress) that were discarded due to input buffer congestion, rather than traffic enforcement, for this PVC end-point." ::= { frPVCEndptEntry 26 } frPVCEndptInDECongDiscards OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames counted by frPVCEndptInCongDiscards with the DE bit set to (1)." ::= { frPVCEndptEntry 27 } frPVCEndptOutCongDiscards OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames sent by the network (egress) that were discarded due to output buffer congestion for this PVC end-point." ::= { frPVCEndptEntry 28 } frPVCEndptOutDECongDiscards OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION Expires April 2000 [Page 50] Internet Draft Frame Relay Service MIB October 1999 "The number of frames counted by frPVCEndptOutCongDiscards with the DE bit set to (1)." ::= { frPVCEndptEntry 29 } frPVCEndptOutDEFrames OBJECT-TYPE SYNTAX Counter32 UNITS "Frames" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of frames sent by the network (egress) with the DE bit set to (1) for this PVC end- point." ::= { frPVCEndptEntry 30 } frPVCEndptConnKind OBJECT-TYPE SYNTAX INTEGER { none(1), fr2fr(2), fr2AtmServiceIWF(3) } MAX-ACCESS read-create STATUS current DESCRIPTION "Designates the type of cross-connection linkage between endpoints. none(1): Endpoint is not yet associated with another endpoint and the frPVCEndptConnectIdentifier is set to zero. fr2fr(2): Endpoint is associated with peer endpoint via the frPVCConnectTable cross-connect table of the FRS MIB. The frPVCEndptConnectIdentifier (used with the frPVCConnectIndex object) identifes the row assigned to the connection. fr2AtmServiceIWF(3): Endpoint is associated with peer endpoint via the frAtmIwfConnectionTable cross-connect table of the FR/ATM PVC Service IWF MIB [28]. The frPVCEndptConnectIdentifier (used with the Expires April 2000 [Page 51] Internet Draft Frame Relay Service MIB October 1999 frAtmIwfConnIndex object) identifies the row assigned to the connection." ::= { frPVCEndptEntry 31 } Expires April 2000 [Page 52] Internet Draft Frame Relay Service MIB October 1999 -- The Frame Relay PVC Connection Group -- The Frame Relay PVC Connection Group -- is used to model the bi-directional -- PVC segment flows; -- point-to-point PVCs, point-to-multipoint -- PVCs, and multipoint-to-multipoint -- PVCs. -- This table has read-create access and -- is used to associate PVC end-points -- together as belonging to one connection. -- The frPVCConnectIndex is used to associate -- all the bi-directional flows. -- Not all implementations will support the -- capability of creating/modifying/deleting -- PVCs using SNMP as a feature of frame relay -- CNM service. -- Once the entries in the frPVCEndptTable -- are created, the following step are used -- to associate the PVC end-points as belonging -- to one PVC connection: -- 1). Obtain a unique frPVCConnectIndex -- using the frPVCConnectIndexValue object. -- 2). Connect the PVC segment endpoints together -- with the applicable frPVCConnectIndex value -- obtained via -- frPVCConnectIndexValue. -- The entries in this table are created by using -- the frPVCConnectRowStatus object. -- 3). The agent will provide the value of the -- corresponding instances of -- frPVCEndptConnectIdentifier with the -- the frPVCConnectIndex value. -- 4). Set frPVCConnectAdminStatus to `active' in all -- rows for this PVC segment to -- turn the PVC on. Expires April 2000 [Page 53] Internet Draft Frame Relay Service MIB October 1999 -- For example, the Frame Relay PVC Connection Group -- models a bi-directional, point-to-point PVC segment -- as one entry in this table. -- Frame Relay Network Frame Relay Network -- Low Port ____________________________________ High Port -- | | -- ______| >> from low to high PVC flow >> |____________ -- | << from high to low PVC flow << | -- |___________________________________| -- -- The terms low and high are chosen to represent numerical -- ordering of a PVC segment's endpoints for representation -- in this table. That is, the endpoint with the lower value -- of ifIndex is termed 'low', while the opposite endpoint -- of the segment is termed 'high'. -- This terminology is to provide directional information; -- for example the frPVCConnectL2hOperStatus and -- frPVCConnectH2lOperStatus as illustrated above. -- If the Frame Relay Connection table is used to model -- a unidirectional PVC, then one direction (either from low -- to high or from high to low) has its Operational Status -- equal to down. -- A PVC segment is a portion of a PVC that traverses one -- Frame Relay Network, and a PVC segment is identified -- by its two end-points (UNI/NNI logical port index value -- and DLCI index value) through one Frame Relay Network. frPVCConnectIndexValue OBJECT-TYPE SYNTAX INTEGER (0..2147483647) MAX-ACCESS read-only STATUS current DESCRIPTION "This object contains an appropriate value to be used for frPVCConnectIndex when creating entries in the frPVCConnectTable. The value 0 indicates that no unassigned entries are available. To obtain the frPVCConnectIndex value for a new entry, the manager issues a management protocol retrieval operation to obtain the current value of this object. After each retrieval, the agent Expires April 2000 [Page 54] Internet Draft Frame Relay Service MIB October 1999 should modify the value to the next unassigned index." ::= { frnetservObjects 4 } -- The Frame Relay PVC Connection Table frPVCConnectTable OBJECT-TYPE SYNTAX SEQUENCE OF FrPVCConnectEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Frame Relay PVC Connect table. A bi- directional PVC segment is modeled as one entry in this table." ::= { frnetservObjects 5 } frPVCConnectEntry OBJECT-TYPE SYNTAX FrPVCConnectEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the Frame Relay PVC Connect table. This entry is used to model a PVC segment in two directions." INDEX { frPVCConnectIndex, frPVCConnectLowIfIndex, frPVCConnectLowDLCIIndex, frPVCConnectHighIfIndex, frPVCConnectHighDLCIIndex } ::= { frPVCConnectTable 1 } FrPVCConnectEntry ::= SEQUENCE { frPVCConnectIndex Integer32, frPVCConnectLowIfIndex InterfaceIndex, frPVCConnectLowDLCIIndex Integer32, frPVCConnectHighIfIndex InterfaceIndex, frPVCConnectHighDLCIIndex Integer32, frPVCConnectAdminStatus INTEGER, frPVCConnectL2hOperStatus INTEGER, frPVCConnectH2lOperStatus INTEGER, frPVCConnectL2hLastChange TimeStamp, frPVCConnectH2lLastChange TimeStamp, frPVCConnectRowStatus RowStatus, frPVCConnectUserName SnmpAdminString, Expires April 2000 [Page 55] Internet Draft Frame Relay Service MIB October 1999 frPVCConnectProviderName SnmpAdminString } frPVCConnectIndex OBJECT-TYPE SYNTAX Integer32 (0..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of this object is equal to the frPVCConnectIndexValue obtained to uniquely identify this PVC segment connection." ::= { frPVCConnectEntry 1 } frPVCConnectLowIfIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of this object is equal to IF-MIB ifIndex value of the UNI/NNI logical port for this PVC segment. The term low implies that this PVC segment end-point has the numerically lower ifIndex value than the connected/associated PVC segment end-point." ::= { frPVCConnectEntry 2 } frPVCConnectLowDLCIIndex OBJECT-TYPE SYNTAX Integer32 (16..4194303) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of this object is equal to the DLCI value for this end-point of the PVC segment." ::= { frPVCConnectEntry 3 } frPVCConnectHighIfIndex OBJECT-TYPE SYNTAX InterfaceIndex MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of this object is equal to IF-MIB ifIndex value for the UNI/NNI logical port for this PVC segment. The term high implies that this PVC segment end-point has the numerically higher ifIndex value than the connected/associated PVC Expires April 2000 [Page 56] Internet Draft Frame Relay Service MIB October 1999 segment end-point." ::= { frPVCConnectEntry 4 } frPVCConnectHighDLCIIndex OBJECT-TYPE SYNTAX Integer32 (16..4194303) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The value of this object is equal to the egress DLCI value for this end-point of the PVC segment." ::= { frPVCConnectEntry 5 } frPVCConnectAdminStatus OBJECT-TYPE SYNTAX INTEGER { active(1), inactive(2), testing(3) } MAX-ACCESS read-create STATUS current DESCRIPTION "The value of this object identifies the desired administrative status of this bi-directional PVC segment. The active state means the PVC segment is currently operational; the inactive state means the PVC segment is currently not operational; the testing state means the PVC segment is currently undergoing a test. This state is set by an administrative entity. This value affects the PVC status indicated across the ingress NNI/UNI of both end-points of the bi-directional PVC segment. When a PVC segment connection is created using this table, this object is initially set to `inactive'. After the frPVCConnectRowStatus object is set to `active' (and the corresponding/associated entries in the frPVCEndptTable have their frPVCEndptRowStatus object set to `active'), the frPVCConnectAdminStatus object may be set to `active' to turn on the PVC segment connection." ::= { frPVCConnectEntry 6 } frPVCConnectL2hOperStatus OBJECT-TYPE SYNTAX INTEGER { active(1), Expires April 2000 [Page 57] Internet Draft Frame Relay Service MIB October 1999 inactive(2), testing(3), unknown(4) } MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the current operational status of the PVC segment connection in one direction; (i.e., in the low to high direction). This value affects the PVC status indicated across the ingress NNI/UNI (low side) of the PVC segment. The values mean: active - PVC is currently operational inactive - PVC is currently not operational. This may be because of an underlying LMI or DS1 failure. testing - PVC is currently undergoing a test. This may be because of an underlying frLport or DS1 undergoing a test. unknown - the status of the PVC currently can not be determined." ::= { frPVCConnectEntry 7 } frPVCConnectH2lOperStatus OBJECT-TYPE SYNTAX INTEGER { active(1), inactive(2), testing(3), unknown(4) } MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object identifies the current operational status of the PVC segment connection in one direction; (i.e., in the high to low direction).. This value affects the PVC status indicated across the ingress NNI/UNI (high side) of the PVC segment. The values mean: active - PVC is currently operational Expires April 2000 [Page 58] Internet Draft Frame Relay Service MIB October 1999 inactive - PVC is currently not operational. This may be because of an underlying LMI or DS1 failure. testing - PVC is currently undergoing a test. This may be because of an underlying frLport or DS1 undergoing a test. unknown - the status of the PVC currently can not be determined." ::= { frPVCConnectEntry 8 } frPVCConnectL2hLastChange OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of MIB II's sysUpTime object at the time this PVC segment entered its current operational state in the low to high direction. If the current state was entered prior to the last re-initialization of the FRS agent, then this object contains a zero value." ::= { frPVCConnectEntry 9 } frPVCConnectH2lLastChange OBJECT-TYPE SYNTAX TimeStamp MAX-ACCESS read-only STATUS current DESCRIPTION "The value of MIB II's sysUpTime object at the time this PVC segment entered its current operational state in the high to low direction. If the current state was entered prior to the last re-initialization of the FRS agent, then this object contains a zero value." ::= { frPVCConnectEntry 10 } frPVCConnectRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this entry in the frPVCConnectTable. This variable is used to create new connections for the PVC end-points and to change existing connections of the PVC end- Expires April 2000 [Page 59] Internet Draft Frame Relay Service MIB October 1999 points. This object must be initially set to `createAndWait'. In this state, the agent checks the parameters in the associated entries in the frPVCEndptTable to verify that the PVC end-points can be connected (i.e., the In parameters for one PVC end-point are equal to the Out parameters for the other PVC end-point). This object can not be set to `active' unless the following columnar object exists in this row: frPVCConnectAdminStatus. The agent also supplies the associated value of frPVCConnectIndex for the frPVCEndptConnectIdentifier instances. To turn on a PVC segment connection, the frPVCConnectAdminStatus is set to `active'." ::= { frPVCConnectEntry 11 } frPVCConnectUserName OBJECT-TYPE SYNTAX SnmpAdminString (0..255) MAX-ACCESS read-create STATUS current DESCRIPTION "This is a service user assigned textual representation of a PVC." ::= { frPVCConnectEntry 12 } frPVCConnectProviderName OBJECT-TYPE SYNTAX SnmpAdminString (0..255) MAX-ACCESS read-only STATUS current DESCRIPTION "This is a system supplied textual representation of PVC. It is assigned by the service provider." ::= { frPVCConnectEntry 13 } Expires April 2000 [Page 60] Internet Draft Frame Relay Service MIB October 1999 -- The Frame Relay Accounting Groups -- The groups are the following: -- Accounting on a PVC basis -- Accounting on an Interface/Logical Port basis -- The Accounting on a Frame Relay PVC basis Group -- The accounting information is collected for a PVC -- segment end-point. frAccountPVCTable OBJECT-TYPE SYNTAX SEQUENCE OF FrAccountPVCEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Frame Relay Accounting PVC table. This table is used to perform accounting on a PVC segment end-point basis." ::= { frnetservObjects 6 } frAccountPVCEntry OBJECT-TYPE SYNTAX FrAccountPVCEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the Frame Relay Accounting PVC table." INDEX { ifIndex, frAccountPVCDLCIIndex } ::= { frAccountPVCTable 1 } FrAccountPVCEntry ::= SEQUENCE { frAccountPVCDLCIIndex Integer32, frAccountPVCSegmentSize Integer32, frAccountPVCInSegments Counter32, frAccountPVCOutSegments Counter32 } frAccountPVCDLCIIndex OBJECT-TYPE SYNTAX Integer32 (16..4194303) MAX-ACCESS not-accessible STATUS current DESCRIPTION Expires April 2000 [Page 61] Internet Draft Frame Relay Service MIB October 1999 "The value of this object is equal to the DLCI value for this PVC segment end-point." ::= { frAccountPVCEntry 1 } frAccountPVCSegmentSize OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object is equal to the Segment Size for this PVC segment end-point." ::= { frAccountPVCEntry 2 } frAccountPVCInSegments OBJECT-TYPE SYNTAX Counter32 UNITS "Segments" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object is equal to the number of segments received by this PVC segment end- point." ::= { frAccountPVCEntry 3 } frAccountPVCOutSegments OBJECT-TYPE SYNTAX Counter32 UNITS "Segments" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object is equal to the number of segments sent by this PVC segment end-point." ::= { frAccountPVCEntry 4 } Expires April 2000 [Page 62] Internet Draft Frame Relay Service MIB October 1999 -- The Accounting on a Frame Relay Logical Port basis Group frAccountLportTable OBJECT-TYPE SYNTAX SEQUENCE OF FrAccountLportEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The Frame Relay Accounting Logical Port table. This table is used to perform accounting on a UNI/NNI Logical Port basis." ::= { frnetservObjects 7 } frAccountLportEntry OBJECT-TYPE SYNTAX FrAccountLportEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry in the Frame Relay Accounting Logical Port table." INDEX { ifIndex } ::= { frAccountLportTable 1 } FrAccountLportEntry ::= SEQUENCE { frAccountLportSegmentSize Integer32, frAccountLportInSegments Counter32, frAccountLportOutSegments Counter32 } frAccountLportSegmentSize OBJECT-TYPE SYNTAX Integer32 UNITS "Octets" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object is equal to the Segment Size for this UNI/NNI logical port." ::= { frAccountLportEntry 1 } frAccountLportInSegments OBJECT-TYPE SYNTAX Counter32 Expires April 2000 [Page 63] Internet Draft Frame Relay Service MIB October 1999 UNITS "Segments" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object is equal to the number of segments received by this UNI/NNI logical port." ::= { frAccountLportEntry 2 } frAccountLportOutSegments OBJECT-TYPE SYNTAX Counter32 UNITS "Segments" MAX-ACCESS read-only STATUS current DESCRIPTION "The value of this object is equal to the number of segments sent by this UNI/NNI logical port." ::= { frAccountLportEntry 3 } Expires April 2000 [Page 64] Internet Draft Frame Relay Service MIB October 1999 -- Frame Relay Network Service TRAPS frPVCConnectStatusChange NOTIFICATION-TYPE OBJECTS { frPVCConnectIndex, frPVCConnectLowIfIndex, frPVCConnectLowDLCIIndex, frPVCConnectHighIfIndex, frPVCConnectHighDLCIIndex, frPVCConnectL2hOperStatus, frPVCConnectH2lOperStatus, frPVCEndptRcvdSigStatus } STATUS obsolete DESCRIPTION "Refer to the description of the frPVCConnectStatusNotif object that has replaced this object. The object is obsolete due to the incorrect inclusion of index values and to take advantage of the trap prefix for automatic conversion from SMIv2 to SMIv1 by making the one but last sub-ID a zero (i.e. the so-called trap prefix)." ::= { frnetservTraps 1 } frPVCConnectStatusNotif NOTIFICATION-TYPE OBJECTS { frPVCConnectL2hOperStatus, frPVCConnectH2lOperStatus, frPVCEndptRcvdSigStatus } STATUS current DESCRIPTION "This trap indicates that the indicated PVC has changed state. This trap is not sent if an FR-UNI changes state; a linkDown or linkUp trap should be sent instead. The first instance of frPVCEndptRcvdSigStatus is for the endpoint with LowIfIndex, LowDLCIIndex. The second instance of frPVCEndptRcvdSigStatus is for the endpoint with HighIfIndex, HighDLCIIndex" ::= { frnetservTrapsPrefix 1 } Expires April 2000 [Page 65] Internet Draft Frame Relay Service MIB October 1999 -- Conformance Information frnetservConformance OBJECT IDENTIFIER ::= { frnetservMIB 3 } frnetservGroups OBJECT IDENTIFIER ::= { frnetservConformance 1 } frnetservCompliances OBJECT IDENTIFIER ::= { frnetservConformance 2 } frnetSwitchGroups OBJECT IDENTIFIER ::= { frnetservConformance 3 } frnetSwitchCompliances OBJECT IDENTIFIER ::= { frnetservConformance 4 } -- -- Compliance Statements -- frnetservCompliance2 MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which have Frame Relay Network Service Interfaces." MODULE -- this module MANDATORY-GROUPS { frnetservLportGroup, frnetservMgtVCSigGroup, frnetservPVCEndptGroup, frnetservPVCConnectGroup, frnetservPVCNotifGroup2 } GROUP frnetservAccountPVCGroup DESCRIPTION "This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a PVC basis this frame relay interface." GROUP frnetservAccountLportGroup DESCRIPTION "This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a logical port basis this frame relay interface." OBJECT frPVCEndptInMaxFrameSize MIN-ACCESS read-only Expires April 2000 [Page 66] Internet Draft Frame Relay Service MIB October 1999 DESCRIPTION "Write access is not required." OBJECT frPVCEndptInBc MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptInBe MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptInCIR MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutMaxFrameSize MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutBc MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutBe MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutCIR MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptRowStatus -- subset of RowStatus SYNTAX INTEGER { active(1) } MIN-ACCESS read-only DESCRIPTION "Write access is not required, and only one of the six enumerated values for the RowStatus textual Expires April 2000 [Page 67] Internet Draft Frame Relay Service MIB October 1999 convention need be supported, specifically: active(1)." OBJECT frPVCConnectAdminStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCConnectRowStatus -- subset of RowStatus SYNTAX INTEGER { active(1) } MIN-ACCESS read-only DESCRIPTION "Write access is not required, and only one of the six enumerated values for the RowStatus textual convention need be supported, specifically: active(1)." ::= { frnetservCompliances 2 } -- -- Frame Relay Switch (R/W) Compliance Module -- -- The switch provides read/write -- access to all MIB objects. -- frnetSwitchCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for SNMP entities which have Frame Relay Network Switch objects." MODULE -- this module MANDATORY-GROUPS { frnetSwitchLportGroup, frnetSwitchMgtVCSigGroup, frnetservPVCEndptGroup, frnetservPVCConnectGroup, frnetservPVCNotifGroup2 } GROUP frnetservAccountPVCGroup DESCRIPTION "This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a PVC basis this frame relay interface." GROUP frnetservAccountLportGroup Expires April 2000 [Page 68] Internet Draft Frame Relay Service MIB October 1999 DESCRIPTION "This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a logical port basis this frame relay interface." ::= { frnetSwitchCompliances 1 } -- -- Deprecated Compliance Modules -- frnetservCompliance MODULE-COMPLIANCE STATUS deprecated DESCRIPTION "The compliance statement for SNMP entities which have frame relay network service interfaces." MODULE -- this module MANDATORY-GROUPS { frnetservLportGroup, frnetservMgtVCSigGroup, frnetservPVCEndptGroup, frnetservPVCConnectGroup } GROUP frnetservAccountPVCGroup DESCRIPTION "This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a PVC basis this frame relay interface." GROUP frnetservAccountLportGroup DESCRIPTION "This group is optional for frame relay interfaces. It is mandatory if and only if accounting is performed on a logical port basis this frame relay interface." OBJECT frPVCEndptInMaxFrameSize MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptInBc MIN-ACCESS read-only DESCRIPTION "Write access is not required." Expires April 2000 [Page 69] Internet Draft Frame Relay Service MIB October 1999 OBJECT frPVCEndptInBe MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptInCIR MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutMaxFrameSize MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutBc MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutBe MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptOutCIR MIN-ACCESS read-only DESCRIPTION "Write access is not required." OBJECT frPVCEndptRowStatus -- subset of RowStatus SYNTAX INTEGER { active(1) } MIN-ACCESS read-only DESCRIPTION "Write access is not required, and only one of the six enumerated values for the RowStatus textual convention need be supported, specifically: active(1)." OBJECT frPVCConnectAdminStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." Expires April 2000 [Page 70] Internet Draft Frame Relay Service MIB October 1999 OBJECT frPVCConnectRowStatus -- subset of RowStatus SYNTAX INTEGER { active(1) } MIN-ACCESS read-only DESCRIPTION "Write access is not required, and only one of the six enumerated values for the RowStatus textual convention need be supported, specifically: active(1)." ::= { frnetservCompliances 1 } Expires April 2000 [Page 71] Internet Draft Frame Relay Service MIB October 1999 -- -- Units of Conformance -- -- -- Frame Relay Network Service Groups -- frnetservLportGroup OBJECT-GROUP OBJECTS { frLportNumPlan, frLportContact, frLportLocation, frLportType, frLportAddrDLCILen, frLportVCSigProtocol, frLportVCSigPointer, frLportDLCIIndexValue, frLportFragControl, frLportFragSize } STATUS current DESCRIPTION "A collection of objects providing information applicable to a Frame Relay Logical Port." ::= { frnetservGroups 1 } frnetservMgtVCSigGroup OBJECT-GROUP OBJECTS { frMgtVCSigProced, frMgtVCSigUserN391, frMgtVCSigUserN392, frMgtVCSigUserN393, frMgtVCSigUserT391, frMgtVCSigNetN392, frMgtVCSigNetN393, frMgtVCSigNetT392, frMgtVCSigNetnN4, frMgtVCSigNetnT3, frMgtVCSigUserLinkRelErrors, frMgtVCSigUserProtErrors, frMgtVCSigUserChanInactive, frMgtVCSigNetLinkRelErrors, frMgtVCSigNetProtErrors, frMgtVCSigNetChanInactive } STATUS current DESCRIPTION "A collection of objects providing information Expires April 2000 [Page 72] Internet Draft Frame Relay Service MIB October 1999 applicable to the Local In-Channel Signaling Procedures used for a UNI/NNI logical port." ::= { frnetservGroups 2 } frnetservPVCEndptGroup OBJECT-GROUP OBJECTS { frPVCConnectIndexValue, frPVCEndptInMaxFrameSize, frPVCEndptInBc, frPVCEndptInBe, frPVCEndptInCIR, frPVCEndptOutMaxFrameSize, frPVCEndptOutBc, frPVCEndptOutBe, frPVCEndptOutCIR, frPVCEndptConnectIdentifier, frPVCEndptRowStatus, frPVCEndptRcvdSigStatus, frPVCEndptInFrames, frPVCEndptOutFrames, frPVCEndptInDEFrames, frPVCEndptInExcessFrames, frPVCEndptOutExcessFrames, frPVCEndptInDiscards, frPVCEndptInOctets, frPVCEndptOutOctets, frPVCEndptInDiscardsDESet, frPVCEndptInFramesFECNSet, frPVCEndptOutFramesFECNSet, frPVCEndptInFramesBECNSet, frPVCEndptOutFramesBECNSet, frPVCEndptInCongDiscards, frPVCEndptInDECongDiscards, frPVCEndptOutCongDiscards, frPVCEndptOutDECongDiscards, frPVCEndptOutDEFrames, frPVCEndptConnKind } STATUS current DESCRIPTION "A collection of objects providing information application to a frame relay PVC end-point." ::= { frnetservGroups 3 } frnetservPVCConnectGroup OBJECT-GROUP OBJECTS { frPVCConnectAdminStatus, frPVCConnectL2hOperStatus, Expires April 2000 [Page 73] Internet Draft Frame Relay Service MIB October 1999 frPVCConnectH2lOperStatus, frPVCConnectL2hLastChange, frPVCConnectH2lLastChange, frPVCConnectRowStatus, frPVCConnectUserName, frPVCConnectProviderName } STATUS current DESCRIPTION "A collection of objects providing information applicable to a frame relay PVC connection." ::= { frnetservGroups 4 } frnetservAccountPVCGroup OBJECT-GROUP OBJECTS { frAccountPVCSegmentSize, frAccountPVCInSegments, frAccountPVCOutSegments } STATUS current DESCRIPTION "A collection of objects providing accounting information application to a frame relay PVC end- point." ::= { frnetservGroups 5 } frnetservAccountLportGroup OBJECT-GROUP OBJECTS { frAccountLportSegmentSize, frAccountLportInSegments, frAccountLportOutSegments } STATUS current DESCRIPTION "A collection of objects providing accounting information application frame relay logical port." ::= { frnetservGroups 6 } frnetservPVCNotifGroup2 NOTIFICATION-GROUP NOTIFICATIONS { frPVCConnectStatusNotif } STATUS current DESCRIPTION "A collection of notifications that apply to frame relay PVC Connections " ::= { frnetservGroups 8 } -- -- Frame Relay Switch (Read/Write) Groups -- Expires April 2000 [Page 74] Internet Draft Frame Relay Service MIB October 1999 frnetSwitchLportGroup OBJECT-GROUP OBJECTS { frLportNumPlan, frLportContact, frLportLocation, frLportType, frLportAddrDLCILen, frLportVCSigProtocol, frLportVCSigPointer, frLportDLCIIndexValue, frLportTypeAdmin, frLportVCSigProtocolAdmin, frLportVCSigPointerAdmin, frLportFragControl, frLportFragSize } STATUS current DESCRIPTION "A collection of objects providing information applicable to a Frame Relay Logical Port." ::= { frnetSwitchGroups 1 } frnetSwitchMgtVCSigGroup OBJECT-GROUP OBJECTS { frMgtVCSigProced, frMgtVCSigUserN391, frMgtVCSigUserN392, frMgtVCSigUserN393, frMgtVCSigUserT391, frMgtVCSigNetN392, frMgtVCSigNetN393, frMgtVCSigNetT392, frMgtVCSigNetnN4, frMgtVCSigNetnT3, frMgtVCSigUserLinkRelErrors, frMgtVCSigUserProtErrors, frMgtVCSigUserChanInactive, frMgtVCSigNetLinkRelErrors, frMgtVCSigNetProtErrors, frMgtVCSigNetChanInactive, frMgtVCSigProcedAdmin, frMgtVCSigUserN391Admin, frMgtVCSigUserN392Admin, frMgtVCSigUserN393Admin, frMgtVCSigUserT391Admin, frMgtVCSigNetN392Admin, frMgtVCSigNetN393Admin, frMgtVCSigNetT392Admin, Expires April 2000 [Page 75] Internet Draft Frame Relay Service MIB October 1999 frMgtVCSigNetnT3Admin } STATUS current DESCRIPTION "A collection of objects providing information applicable to the Local In-Channel Signaling Procedures used for a UNI/NNI logical port." ::= { frnetSwitchGroups 2 } -- -- Deprecated Groups -- frnetservPVCNotifGroup NOTIFICATION-GROUP NOTIFICATIONS { frPVCConnectStatusChange } STATUS obsolete DESCRIPTION "Deprecated notification group." ::= { frnetservGroups 7 } END Expires April 2000 [Page 76] Internet Draft Frame Relay Service MIB October 1999 4. Acknowledgments This document was produced by the Frame Relay Service MIB Working Group. The working group thanks Bert Wijnen and Bob Stewart for their assistance in reviewing the MIB. Expires April 2000 [Page 77] Internet Draft Frame Relay Service MIB October 1999 5. References [1] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing SNMP Management Frameworks", RFC 2571, April 1999 [2] Rose, M., and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based Internets", STD 16, RFC 1155, May 1990 [3] Rose, M., and K. McCloghrie, "Concise MIB Definitions", STD 16, RFC 1212, March 1991 [4] M. Rose, "A Convention for Defining Traps for use with the SNMP", RFC 1215, March 1991 [5] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M., and S. Waldbusser, "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999 [6] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M., and S. Waldbusser, "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999 [7] McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J., Rose, M., and S. Waldbusser, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999 [8] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol", STD 15, RFC 1157, May 1990. [9] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901, January 1996. [10] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1906, January 1996. [11] Case, J., Harrington D., Presuhn R., and B. Wijnen, "Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)", RFC 2572, April 1999 [12] Blumenthal, U., and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", RFC 2574, April 1999 Expires April 2000 [Page 78] Internet Draft Frame Relay Service MIB October 1999 [13] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1905, January 1996. [14] Levi, D., Meyer, P., and B. Stewart, "SNMPv3 Applications", RFC 2573, April 1999 [15] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)", RFC 2575, April 1999 [16] Case, J., Mundy, R., Partain, D., and B. Stewart, "Introduction to Version 3 of the Internet-standard Network Management Framework", RFC 2570, April 1999 [17] ANSI T1.617-1991, American National Standard for Telecommunications - Integrated Services Digital Network (ISDN) - Digital Subscriber Signaling System No. 1 (DSS1) - Signaling Specification for Frame Relay Bearer Service. [18] Brown, C., and F. Baker, "Management Information Base for Frame Relay DTEs", RFC 2115, Cadia Networks, Cisco Systems, September 1997. [19] Brown, C., and A. Malis, "Multi-Protocol Interconnect over Frame Relay", STD 55, RFC 2427, Consultant, Ascend Communications, Inc., September 1998. [20] Fowler, D, "Definitions of Managed Objects for the DS0 and DS0 Bundle Interface Types", RFC 2494, Newbridge Networks, January 1999. [21] Frame Relay Forum, "Frame Relay Fragmentation Implementation Agreement", FRF.12, December 1997. [22] ITU-T Recommendation Q.933,Integrated Services Digital Network (ISDN) Digital Subscriber Signalling System No. 1 (DSS 1) - Signalling Specifications for Frame Mode Switched and Permanent Virtual Connection Control and Status Monitoring, December 1995 [23] ITU-T Recommendation X.36, Interface Between Data Terminal Equipment (DTE) and Data Circuit-Terminating Equipment (DCE) For Public Data Networks Providing Frame Relay Data Transmission Service By Dedicated Circuit, April 1995 Expires April 2000 [Page 79] Internet Draft Frame Relay Service MIB October 1999 [24] Digital Equipment Corporation, et. al., "Frame Relay Specification with Extensions Based on Proposed T1S1 Standards", Revision 1.0, September 18, 1990 [25] ITU-T Recommendation Q.922, Integrated Services Digital Network (ISDN) Data Link Layer Specification For Frame Mode Bearer Services, February 1992 [26] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2233, Cisco Systems, FTP Software, November 1997. [27] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Management Information Base for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1907, SNMP Reserach, Cisco Systems, Dover Beach Consulting, and International Network Services, January 1996. [28] Rehbehn, K., Nicklass, O., and G. Mouradian, "Definitions of Managed Objects for Monitoring and Controlling the Frame Relay/ATM PVC Service Interworking Function", RFC xxxFRATMMIBxxx, Visual Networks, RAD Data Communications, AT&T Labs, October 1999. Expires April 2000 [Page 80] Internet Draft Frame Relay Service MIB October 1999 6. Security Considerations There are a number of management objects defined in this MIB that have a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. No managed objects in this MIB contain sensitive information. SNMPv1 by itself is not a secure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB. It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2574 [12] and the View-based Access Control Model RFC 2575 [15] is recommended. It is then a customer/user responsibility to ensure that the SNMP entity giving access to an instance of this MIB, is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them. Expires April 2000 [Page 81] Internet Draft Frame Relay Service MIB October 1999 7. Authors' Addresses Kenneth Rehbehn Visual Networks 2092 Gaither Road Rockville, MD, USA 20850 Phone: (301) 296-2325 EMail: krehbehn@visualnetworks.com David Fowler Newbridge Networks 600 March Road Kanata, Ontario, Canada K2K 2E6 Phone: (613) 599-3600, ext 6559 EMail: davef@newbridge.com Expires April 2000 [Page 82] Internet Draft Frame Relay Service MIB October 1999 APPENDIX A Update Information The changes from RFC 1604 are the following: (1) This MIB works for switches too. Read-writable versions of a number of frLport and frVCSig objects were created to allow this. (2) frPVCEndptInDiscards was clarified. Congestion discards are not counted. (3) Descriptions were added for the values of frPVCEndptRcvdSigStatus. (4) An additional instance of frPVCEndptRcvdSigStatus was added to the Connect Status Change Trap. There is now one for each endpoint. (5) ifLinkUpDownTrapEnable is now recommended to be on. (6) frVCSigProced was slightly unclear. The values are clarified along with associated counter definitions. (7) The behaviour of the PVC statuses and the Endpt Sig Statuses are clarified when an underlying layer fails. (8) frPVCConnectIndexValue was added. (9) An ifStackTable example was added. (10) Additional counters for PVCs were added. (11) Names for PVCs were added. (12) Addition of counters to track frames offered (in) and delivered (out) for increased visibility into policing-driven discards, congestion-driven discards, DE bit setting, and congestion bit setting. frPVCEndptInDiscardsDESet frPVCEndptInFramesFECNSet frPVCEndptOutFramesFECNSet frPVCEndptInFramesBECNSet frPVCEndptOutFramesBECNSet frPVCEndptInCongDiscards frPVCEndptInDECongDiscards Expires April 2000 [Page 83] Internet Draft Frame Relay Service MIB October 1999 frPVCEndptOutCongDiscards frPVCEndptOutDECongDiscards frPVCEndptOutDEFrames (13) Addition of Frame Relay Fragmentation objects frLportFragControl and frLportFragSize. (14) Reference to RFC 1490 changed to STD 55, RFC 2427. (15) Created a NOTIFICATION object identified using the trap prefix convention to support automatic generation of SMIv1 MIB. The new object is named frPVCConnectStatusNotif. The old object frPVCConnectStatusChange has been obsoleted. The compliance statements have been obsoleted/created to match. (16) Add frPVCEndptConnKind object to select FR/ATM Service IWF as a target for an interworked connection. (17) Utilized SnmpAdminString syntax in place of DisplayString syntax. Expires April 2000 [Page 84] Internet Draft Frame Relay Service MIB October 1999 Intellectual Property Rights The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director. Full Copyright Statement Copyright (C) The Internet Society (1999). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an Expires April 2000 [Page 85] Internet Draft Frame Relay Service MIB October 1999 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Expires April 2000 [Page 86]