Framework and Requirements for the Internet Intelligent Networks

L. Slutsman, G. Ash
AT&T Labs
F. Haerens
Alcatel
V. Gurbani
Lucent Technologies
Outline

• Generalized IIN architecture
• Transparent Access from SIP networks to traditional IN Services
• Internet-Service-Creation (CPL, CGI)
• API Access to Service-Creation
• Service Example
Transparent Access to Traditional IN, Internet-based Service Creation, & APIs

• Motivation:
 – PSTN and VoIP networks will coexist for some time;
 – reuse of hardware (SCP, SN, SMS), software, and service logic
 – time-to-market for introduction of VoIP services;
 – propose to include access to traditional-IN together with internet-based service creation (CPL, CGI)
 – API technologies (e.g. Parlay, Jain) also may be incorporated
Generalize IIN architecture

Service Creation Environment

Service Execution Environment

TCAP/INAP

API’s

Transaction Layer

SoftSwitch

SIP Server

CPL

SIP Server

CGI

SIP Server

SIP Server

SIP Server
Traditional IN Architecture

- Service Creation Environment
- Service Execution Environment (SCP)
- PSTN Network
- SoftSwitch Layer
- SIP Server
- SIP Network
- TCAP/INAP
- GW
- Switch
Architecture (Cont)

• Based on Remote Execution of Service Logic.

• SoftSwitch Layer makes SCP believes that it deals with “switches”.

• Challenge is to map SIP FSMs into IN BCSM.

• Limitations: 1) heavily relies on SS7; 2) performance degradation due to remote execution.
Internet Based Service Creation

• The execution of the service logic takes place on the server.
• Call Processing Language (CPL)—condition-action pairs based language.
• Common Gateway Interface (CGI) for SIP:
 – programming language independent;
 – derived from CGI-HTTP
• Others
Generalize IIN architecture (Cont)

• How to Invoke a service logic (e.g. script):
 – Use a trigger database: (“Trigger”,P₁,..Pₙ), where Pi is the ordered list of service programs; “Trigger”=(“SIP_Call_Leg”, Sᵢ) and Sᵢ is a state from the corresponding SIP transition diagram.
 – In addition, information that comes with message, along with “global” variables are used by service logic.
Service Example

- Service: calls directed to catalogorder@sears.org should be distributed between two warehouses in ratio 3:5.
- “Trigger”:
 - To=catalogorder@sears.org
 - From=*
 - Call_ID=*
 - SIP State=S_1
The Distributed Service Execution Environment

Legend:
Script1 directs calls of interest to the Sears Proxy;
Script2 counts calls and routes them to the appropriate warehouse.
Centralized Service Execution Environment (SCP)

SCP: updates number of calls to each warehouse and determines the destination

User → SIP Proxy → SoftSwitch

SoftSwitch

Query → Destination

UAS1 → Warehouse1

UAS2 → Warehouse2