
Replication
and Migration

Background, Requirements and
Strawman



Migration and Replication
• The point is: Increased availability

– Through replication of shared read-only
data

– Less “NFS Server not responding”

• The point is: Increased transparency
– Through transparent migration
– Eliminate client reboots to bind to new

location



Replication and Migration
• Replication is the creation of one or more

copies of a “file system”
– Distinguish “read-only” from single writable master

and “read-write” replication

• Migration is the movement of a “file system”
from one server to another
– Useful only when transparent
– Necessary even when not
– Rubber meets the sky on migrating single writable

file system



NFS V4 Migration/Replication

• NFS Version 4 defines client to server
interaction ONLY
– List of servers hint to client where file

system may migrate/replicate to

– The volatile file handles allow cheesy
solutions-

– Hashed file names persist-



Quick Review

• Sun client failover for NFS Version 3 (and 2)
– Store pathnames in rnodes
– Failover transparent with re-resoolve using

alternates from Automounter maps
– No migration support?
– What replica consistency? -

• Solves the problem of hung client when
“replicate” read-only binaries etc are available



Quick Review

• AFS and DFS replication
– Single master write copy for replication,

read-only replicas
– Client failover through “file system”

resolution using replicated data base
– “Inodes” preserved (file system semantic)

• Migration leverages infrastructure
– Move a home directory (writable file

system)



Quick Review

• rdist
• rsync



Requirements



Requirements
• Transparent client failover

– For read-only replicas and migrated writable
volumes

• Performance
– Bandwidth conservative
– Differences propagated
– Restartable
– Client lockout time minimized

• Security
– As good as V4



Requirements

• Scalable
– Huge file systems
– Small file systems

• Capability negotiation between “peers”(?)
– I believe this referred to things like attribute

differences

• Efficient multi-way replication (propagation)



Requirements

• Correctness
– “Atomic” propagation of file system from

client view
– Failover to a correct replica version

• TCP/IP based
– No legacy UDP requirement



Issues



Issues
• Replica versioning non-existent

– Failing over to “correct” version of replica
impossible?

– Base V4 protocol change?
– Proposal: Investigate versioning

requirement



Issues
• Single vs. multi-master

– Multi-master entails conflict resolution

– Proposal: Single master copy sufficient –
objections?

• Disconnected operation irrelevant
– Corollary to above
– Proposal: Disconnected operation for

clients not required – objections?



Issues
• File oriented

– Fits with NFS model, and heterogeneous
– Efficiency concerns
– Block-oriented not heterogeneous
– Proposal: Draft proposal for comments.

• Replicating “opaque” (to NFS) local file
system attributes
– Proposal: NFS Version 4 named attributes

propagated – unsupported attributes not



Issues
• Migration/replication only for V4

– Not a general (rdist) mechanism

• Lock and delegation propagation
– Certainly a requirement, but ouch!

– Proposal: Locking and delegation state
propagated, acceptable that it resembles a
server reboot.

– (Brent?)



Issues
• We pushed need for reliable

name/location service from clients to
servers
– Proposal: Investigate how far to tie back

end protocol to name sevice.



RFC: NFS V4 “file system”

• Has a file system ID
• A closed set of unique “file ids” – aka

inodes-
• A set of attributes associated with the

“file system”
• The basis for replication and migration?



File system model issues?

• fsid should define a “file system”
– Hard links exist within the file system and must be

maintained

• Attributes of file must be maintained
– Times cannot be screwed up

• Heterogeneous interoperability
– What happens if you migrate a file system from

multibyte to single byte name encoding
environment?



The process

• Recommendation is to re-charter the
existing workgroup to specify back-end
protocol
– Need to write new charter



?
??

?

?

?

? ?

??

?
?



Migration in DFS: an example
• A read-only clone is made of a “fileset”

(replication unit)
– Brief operation, copy-on-write properties for

primary

• Clone is transferred
– During transfer clients have read/write access to

primary fileset

• The clients are locked against further updates
during incremental transfer of new data

• The clients atomically fail over to the new
location



Migration in DFS: an example

• Migrated volume only visible on
successful transfer

• Client disruption is minimized
• Performance in the face of large files

(by doing block incremental completion
phase) is solved



Replication: DFS example

• Replication based on clone operation –
as in migration (and backup)

• Replicas are versioned
• Transaction to enable replica on

successful transfer
• Coda extends to writable replicas?



Replication: rsync example

• Super-rdist protocol with recovery

• Over TCP
• Propagates block level updates

• Works on standard file systems
• Could be basis for NFS Version 4 replication

• Seems to lack “atomic” update from client
perspective and versioning (to deal with
failure recovery)


