Architectural Framework For Automatic Protection Provisioning in Dynamic Optical Rings

OIF2001.041

N. Ghani, J. Fu, D. Guo, X. Liu, Z. Zhang (Sorrento Networks Inc)
P. Bonenfant, L. Zhang, A. R. Moral, M. Krishnaswamy (Photuris Inc)
D. Papadimitriou (Alcatel)
S. Dharanikota, R. Jain (Nayna Networks Inc)

50th IETF Meeting, Minneapolis, MN, Florida, March 2001
Outline

- Background and Motivation
- Optical Ring Architectures
- Dynamic Provisioning
- Future Work
- References
Background and Motivation

SONET/SDH represent traditional ring solutions

- Rigid TDM-framing formats (125 µs frame)
- Two- and four-fiber rings (UPSR, BLSR)
- 50 ms protection switching (1+1, 1:1, 1:N)
- Well-defined K1-K2 byte APS protocol

Limitations and restrictions of TDM rings

- TDM channels difficult to scale beyond 10 Gb/s
- Non-transparency limitations (mappings required)
- Unscalable, costly for large fiber/lambda counts
- Complex, lengthy service provisioning procedures
Background and Motivation

- Architectural significance of rings will remain
 - Ring architectures still dominate fiber plants:
 - E.g., Access, metro/regional, even long-haul
 - Extensive operator experience (TDM rings)
 - Ubiquitous fast protection switching concepts

- Must extend ring concepts to optical domain
 - Timely, natural analogs to TDM rings
 - Very strong operator interest (esp. metro area)
 - Leverage existing plants (low transition costs)
 - Improved service delivery timescales
Background and Motivation

“Mesh Over Rings”

Virtual router topology

IP router

MPLS (GMPLS)

mesh provisioning

Physical optical topology

O-ADM node

Metro/regional fiber rings

OXC node

50th IETF Meeting, Minneapolis, MN, March 2001
Background and Motivation

Current focus largely on mesh architectures
- Evolve from IP protocols, themselves mesh-based
- Early target of intelligent optics was “long-haul mesh”
- Architecture, signaling definitions (IETF, OIF):
 - Multi-protocol lambda switching (MP\text{\lambda}S)
 - Generalized MPLS (GMPLS)

Need to formalize work activities on optical rings
- Not just special case of mesh (many specifics)
- T1X1 has started looking at rings (early stage)
- Need proper integration w. MPLS–based concepts:
 Unify architecture, signaling, OAM&P, etc
Optical Rings Overview

- **Extend existing TDM ring concepts**
 - Wavelength path replaces TDM timeslot channel
 - Optical add-drop multiplexer (O-ADM) nodes:
 - Wavelength bypass, add, drop, protection stages
 - Translucent (O-E) or transparent O-ADM designs:
 - In-band or out-band signaling/monitoring

- **Various protection concepts researched**
 - Optical channel (OCh) UPSR schemes
 - Optical multiplex section (OMS) BLSR schemes
 - Optical channel (OCh) BPSR schemes
Sample Overview of Optical Add-Drop Multiplexer (O-ADM) Node (2-fiber)
Optical Ring Architectures

- **Dedicated Path Protection Rings (DPRING)**
 - Two-fiber UPSR scheme, non-signaled (1+1)
 - Low spatial re-use, good for hubbed traffic demands

- **OMS Shared Protection Ring (OMS-SPRING)**
 - Designed for fiber cut events, scalable protection
 - Two- and four-fiber schemes

- **OCh Shared Protection Ring (OCh-SPRING)**
 - Extend BLSR concepts to OCh level (i.e., BPSR)
 - Resource efficient, good for distributed demands

Require APS signaling protocol
Dynamic Provisioning

新兴的“GMPLS-based”光控制
- CR-LDP/RSVP-TE用于路径设置信号
- 增强的IGP用于信息扩散
- 新的“UNI”定义（O-UNI, ODSI, 等）

扩展框架以包括光环
- 提供单一，统一的框架/架构
- 在每个（以上）区域都需要仔细考虑
- 目前尚未考虑“APS-like”信号
- 首先，初步讨论在草案提交中：
 OIF 2001.041, draft-ghani-optical-rings-00.txt

旁注：IETF正在研究IP在RPR上的应用
Dynamic Provisioning

Channel signaling considerations:
- O-UNI (or other) interfaces define “attributes”:
 Need mappings on to underlying rings
- CR-LDP/RSVP-TE (working/protection path setup):
 Any “ring-specific” extensions required?
- Multi-domain ring provisioning (NNI implications?):
 E.g., protection coordination issues

Resource and state information dissemination
- Many provisions already for mesh architectures:
 Fiber type, connectivity, transparency, SRLG, etc.
- Other possible additions for optical rings:
 E.g., Define opaque LSA’s of area scope?
Dynamic Provisioning

Protection signaling requirements

- “O-APS” for protection switching (BLSR, BPSR):
 - Fast messaging, guaranteed latency
- Operators will demand “SONET-like feel”
- Added considerations for “operation modes”:
 - E.g., lockouts, forced switches, manual switches

Various APS alternatives possible

- “Direct approach”: Extend LSP protection signaling
 - MPLS PSL/PML LSR nodes, RNT signaling
 - Many implementation issues, speed concerns
- Develop new packetized “APS” protocol:
 - Generalize SONET K1-K2 byte protocol?
Dynamic Provisioning

Protection Signaling Interworkings

- IGP re-routing (Packet level)
- RSVP-TE/CR-LDP (LSP flow level)
- RSVP-TE/CR-LDP O-APS Protocol (Lightpath level)

E.g., MPLS LSP path protection framework/proposal

- Working LSP (A-B-C-D-E)
- Protection (PMTG) (A-B-F-G-D-E)
- Fault messaging (FIS messages)

Protected working LSP group sub-path (between PSL-PML pair)
Dynamic Provisioning

Additional considerations possible

- Multi-layer (protection) escalation strategies:
 - Inter-layer (level) hold-off or signaling needed
- Mesh-ring interworkings:
 - Overlay: Leverage for mesh ("virtual rings")
 - Hybrid: Inter-topology provisioning (for migration)

 D. Guo, *et al*, draft-guo-mesh-ring-optical-01.txt
 D. Papadimitriou, draft-papadimitriou-optical-rings-00.txt

Recommendations/proposals

- Accept ring framework as a working group item
- Explore synergies with packet rings (RPR)?
References