On the packet ordering problem

D. I. Pullin

California Institute of Technology

R. Mandeville and A. Corlett

CQOS Inc., Irvine CA

51st IETF, London, August 7 2001

Problem Definition

- \bullet Packet transmission between two nodes, ${\cal A}$ and ${\cal B}$
- Suppose \mathcal{A} sends N packets to \mathcal{B}
- Assume all N packets arrive at $\mathcal B$ no loss
- But they arrive out of order
- Is there a metric that quantifies this 'out-of-orderedness'?

Send and receive order

- Packet sequence from \mathcal{A} : $\mathcal{X}_{\mathcal{A}} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- Packet set received at \mathcal{B} : $\mathcal{X}_{\mathcal{B}} = \{3, 2, 4, 6, 5, 9, 7, 1, 10, 8\}$
- Which members of $\mathcal{X}_{\mathcal{B}}$ are in order and which are not?
- Consider ascending subsequences of $\mathcal{X}_{\mathcal{B}}$ of length $m \leq 10$

$$m = 3: \quad S \equiv \{2, 4, 6\} \\ S \equiv \{4, 7, 10\} \\ S \equiv \{5, 9, 10\}$$

Longest ascending subsequences

- For given $\mathcal{X}_{\mathcal{B}}$, there exists some $m = m_{max}$ such that no ascending subsequence is of length greater than m_{max}
- Longest ascending subsequences of

$$\mathcal{X}_{\mathcal{B}} = \{3, 2, 4, 6, 5, 9, 7, 1, 10, 8\}$$

are

$$m_{max} = 5: \quad S_1 \equiv \{2, 4, 5, 9, 10\} \\ S_2 \equiv \{2, 4, 5, 7, 10\} \\ S_3 \equiv \{2, 4, 5, 7, 8\}$$

These are not exhaustive!

Minimal Longest Ascending Subsequence (MLAS)

• MLAS is the longest ascending subsequence with the smallest terminal element

$$\mathcal{X}_{\mathcal{B}} = \{3, 2, 4, 6, 5, 9, 7, 1, 10, 8\}$$

$$m_{max} = 5: \quad S_1 \equiv \{2, 4, 5, 9, 10\} \\ S_2 \equiv \{2, 4, 5, 7, 10\} \\ S_3 \equiv \{2, 4, 5, 7, 8\}$$

- $\mathcal{S}_3 < \mathcal{S}_2 < \mathcal{S}_1$ because 8 < 10 and 7 < 9
- $S_3 \equiv \{2, 4, 5, 7, 8\}$ is the (unique) MLAS of \mathcal{X}_B

Packet sequence 'orderedness' metric Ω

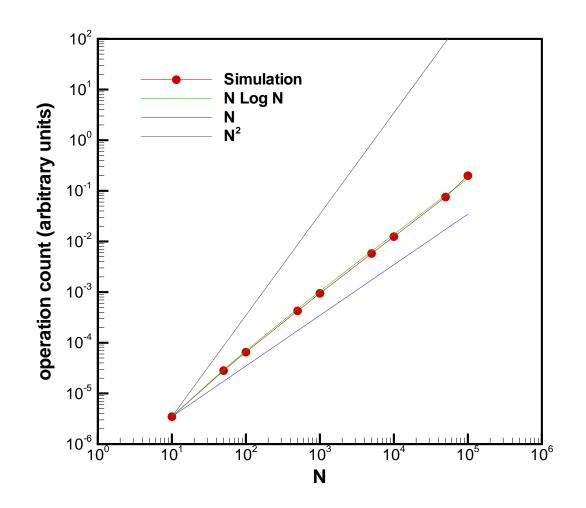
- $\mathcal{X}_{\mathcal{B}} = \{3, 2, 4, 6, 5, 9, 7, 1, 10, 8\}, N = 10$
- $m_{max} = 5$: $S_3 \equiv \{2, 4, 5, 7, 8\}$ is MLAS
- Define 'orderedness' metric as

$$\Omega \equiv \frac{m_{max}}{N}$$
our example :
$$\Omega = \frac{5}{10} = 0.5$$

• Number of 'packet moves' to sort sequence = $N - m_{max}$

MLAS algorithm

- See: http://www.tiac.net/users/cri/mlas.html
- Sequence of N elements $\mathcal{X}_N = \{p_1, p_2, ... p_N\}$
- Suppose we have MLAS for $\mathcal{X}_{K-1} = \{p_1, p_2, ... p_{K-1}\}$ K-1 < N
- Use $[\mathcal{X}_{K-1}; p_K] \to \mathsf{MLAS}$ of \mathcal{X}_K (with binary search)
- Repeated application \rightarrow MLAS of $\mathcal{X}_N \rightarrow \Omega = \frac{m_{max}}{N}$
- Order $(N \log N)$ operations and Order(N) storage



MLAS algorithm cost versus length of sequence N.

Summary

Proposed packet orderedness parameter based on MLAS

$$\Omega = \frac{m_{max}}{N}$$

 $m_{max} = \text{length of MLAS}$

- $\Omega = 1 \rightarrow$ packets received in order sent
- Ω determined in Order(N log N) operations with Order(N) memory
- Implementation; the algorithm has been implemented on CQOS equipment