# SIGMA: SIGN-and-MAC Crypto rationale and proposals

Presentation by Sara Bitan and Hugo Krawczyk sarab@cs.technion.ac.il hugo@ee.technion.ac.il

IETF meeting, December 2001

# Agenda

- Crypto background: key exchange
- The SIGMA approach
- Specific proposals
- Comparison
- MAC, encryption and ESP issues

# Crypto Focus

- Focus on cryptographic design:
  - security: secrecy and authentication (and the subtleties of identity-key binding)
  - sound analysis (proponent's responsibility)
  - PFS: full, windowed
  - identity protection: who, active vs. passive
  - performance: computation, latency
  - DoS protection: adaptive, built-in
- A lot of other issues are essential for a working protocol but **orthogonal** to the above:
  - message formats
  - general mechanisms (e.g., retransmissions)
  - extent of negotiation
  - code preservation vs. "start from scratch"

# Building Authenticated Diffie-Hellman

The basic:

 $A \xrightarrow{A, g^x} B$   $B, g^y$ 

- assumes authenticated channels
- what if man-in-the-middle?

# Attempt at Authenticated Diffie-Hellman

$$A \xrightarrow{A, g^x, \operatorname{SIG}_A(g^x)} B$$

$$B, g^y, \operatorname{SIG}_B(g^y)$$

- what if attacker ever finds a triple  $(x, g^x, \operatorname{SIG}_A(g^x))$ ?
  - e.g., file of pre-computed  $(x, g^x)$  pairs
- ephemeral leakage should never allow long-term impersonation

# Authenticated DH (with replay protection)

Note: nonces/cookies omitted (needed if  $g^x, g^y$  re-used)

$$A \xrightarrow{A, g^x} B$$

$$B, g^y, \operatorname{SIG}_B(g^x, g^y)$$

$$\operatorname{SIG}_A(g^y, g^x)$$

A: "Shared  $K = g^{xy}$  with B"  $(K \equiv B)$ 

B: "Shared  $K = g^{xy}$  with A"  $(K \equiv A)$ 

Looks fine, but...

# DVW attack [DVW]

 $A \longrightarrow E \longrightarrow B$   $A, g^x \longrightarrow E, g^x \longrightarrow B$   $B, g^y, \operatorname{SIG}_B(g^x, g^y) \longrightarrow B, g^y, \operatorname{SIG}_B(g^x, g^y)$   $\operatorname{SIG}_A(g^y, g^x) \longrightarrow \operatorname{SIG}_E(g^y, g^x)$ 

• any damage? wrong identity binding!

A: "Shared  $K = g^{xy}$  with B"  $(K \equiv B)$ 

B: "Shared  $K = g^{xy}$  with E"  $(K \equiv E)$ 

E: doesn't know K but B will consider anything sent by A as coming from E

 $\{ "deposit attached e-cash to my account" \}_K$ 

# Authenticated DH (ISO)

$$A \xrightarrow{A, g^x} B$$

$$B, g^y, \operatorname{SIG}_B(g^x, g^y, A)$$

$$A, \operatorname{SIG}_A(g^y, g^x, B)$$

Thwarts DVW attack:

$$A, g^x \longrightarrow E, g^x$$

$$B, g^y, \operatorname{SIG}_B(g^x, g^y, E)$$
  $B, g^y, \operatorname{SIG}_B(g^x, g^y, E)$ 

But is it secure? Yes: [CK - Eurocrypt'01]

## Identity Protection: from ISO to SIGMA

- ISO protocol: requires peer's id under signature
  - can only protect id's against *passive* attacks
  - active protection possible for one peer at the expense of extra signature and identity disclosure (or added round trips). E.g. JFK.
- Solution: do not bind peer's identity to sig
  - STS protocol (but attacks are possible)
  - two other variants (mac-ed signature and signed-key) are insecure
- Provable secure and efficient: SIGN-and-MAC (SIGMA)

[Kra'95]: proposed to Photuris, adopted in IKE

# SIGMA: the basic protocol

$$A \longrightarrow g^x$$
 $B$ 

$$g^y, B, \operatorname{SIG}_B(g^x, g^y), \operatorname{MAC}_{K_a}(B)$$

$$A, \operatorname{SIG}_A(g^y, g^x), \operatorname{MAC}_{K_a}(A)$$

Equivalent security (just MAC space saving):

$$A = g^x$$
  $B$ 

$$g^y, B, \operatorname{SIG}_B(\operatorname{MAC}_{K_a}(B, g^x, g^y))$$

$$A, \operatorname{SIG}_A(\operatorname{MAC}_{K_a}(A, g^y, g^x))$$

 $K_a$  derived from  $g^{xy}$ ; can encrypt with  $K_e$ Note: MAC  $\equiv$  prf in IKE

# SIGMA: Basic Design Facts

- The essential step:

  MAC your own IDentity!
- If ID not inside MAC security is totally compromised (even if ID included in signature!)
- Signature and MAC have complementary and essential security functionalities against M-i-t-M
  - signature protects secrecy of key against exponent replacement by MitM
  - MAC protects identity-key binding against
     DVW-type attacks by MitM
- ID protection via encryption (resistant to active attacks); but core authentication security decoupled from ID protection!
- Flexibility: a lot of possible design trade-offs (see next)

### SIGMA: secure and flexible

 $A \longrightarrow g^{y}$ 

next two messages interchangeable!

$$A$$
,  $\operatorname{SIG}_A(\operatorname{MAC}_{K_a}(A, g^y, g^x))$ 

$$B$$
 ,  $\mathrm{SIG}_B(\mathrm{MAC}_{K_a}(B,g^x,g^y))$ 

- $\bullet$  interchangeability  $\Rightarrow$  design tradeoffs!
  - o id protection (active, passive)
  - o round trips, computation latency
  - DoS protection (adaptive or built-in)

# Properties of all SIGMA proposals

- Provable secure
- Full PFS (but allow reuse of DH exponents)
- One identity secure against active attackers, one against passive (best possible)
- Best performance for PFS (1 sig, 1 ver, 1 DH)
- Two round trips for core protocol:
  - SIGMA-4 includes DoS protection (in 2 RT)
  - SIGMA-I and SIGMA-R require optional round trip for adaptive DoS protection
- Note: following descriptions place MAC inside signature; MAC outside is equally good IF it explicitly covers identity!

# Specific SIGMA proposals: SIGMA-I

(SIGMA instantiation in draft-sigma; added ack)

$$A$$
  $g^{x}, n_{A}$   $E$  
$$g^{y}, n_{B}, \{B, \operatorname{SIG}_{B}(\operatorname{MAC}_{K_{a}}(1, n_{A}, B, g^{y}))\}_{K_{e}}$$
 
$$\{A, \operatorname{SIG}_{A}(\operatorname{MAC}_{K_{a}}(0, n_{B}, A, g^{x}))\}_{K_{e}}$$
 
$$\operatorname{MAC}_{K_{a}}(2, n_{A}, \operatorname{"ACK"})$$

- 2 RTs in normal operation
- extra RT if DoS protection activated
- I's id protected against active attacks, R's id against passive

#### SIGMA-I: IKE-like notation

```
HDR, SA, KE, Ni
                       HDR, SA, KE, Nr,
                  <--
                       IDir*, [CERT*,] SIG_R*
HDR, IDii*,
 [CERT*,] SIG_I*
                  <-- HDR, "ACK", HASH-ACK
Notation:
*: encryption against active attacks
SIG_I = signature of I on HASH_I
SIG_R = signature of R on HASH_R
HASH_I = prf(SKEYID, 0 | Nr | IDii_b | MSG_I)
HASH_R = prf(SKEYID, 1 | Ni | IDir_b | MSG_R)
MSG_I = all information sent by I (except SIG)
MSG_R = all information sent by R (except SIG)
HASH-ACK = prf(SKEYID, 2 | Nr | HDR | "ACK")
```

# Specific SIGMA proposals: SIGMA-R

(IKEv2-like but explicit MAC and provable security)

$$A = \underbrace{g^x, n_A} B$$

$$\underbrace{g^y, n_B}$$

$$\{A, \operatorname{SIG}_A(\operatorname{MAC}_{K_a}(0, n_B, A, g^x))\}_{K_e}$$

$$\{B, \operatorname{SIG}_B(\operatorname{MAC}_{K_a}(1, n_A, B, g^y))\}_{K_e}$$

- 2 RTs in normal operation
- extra RT if DoS protection activated
- R's id protected against active attacks, I's id against passive

## SIGMA-R: IKE-like notation

# Specific SIGMA proposals: SIGMA-4

(A sig-based version of P-SIGMA in draft-sigma: a "resolution" of SIGMA, IKEv2 and JFK)



- 2 RTs, including DoS protection via a cookie RC computed on  $n_B, n_A, g^y$
- R's id protected against active attacks, I's id against passive
- long msg3, long input to cookie

# SIGMA-4: JFK/IKE notation

JFK-like notation:

```
I->R: Ni, g^i
R->I: Ni, Nr, g^r, GRPINFOr, RC
I->R: Ni, Nr, g^i, g^r, RC
      E\{Ke\}(IDi, sa, SIG\{i\}(MAC\{Ka\}(0, info-I)))
R->I: E{Ke}(IDr, sa', SIG{r}(MAC{Ka}(1,info-R)))
RC=Cookie-function(Ni,Nr,g^r)
info-I = Nr, Ni, IDi, g^i, g^r, sa
info-R = Ni, Nr, IDr, g^r, g^i, sa'
IKE-like notation:
HDR, KEi, SAi, Ni
                        -->
                        <-- HDR, KEr, SAr, Nr, RC
HDR, RC, KEr, SAr, Nr,
KEi, Ni, IDii*, SIG_I* -->
                        <-- HDR, IDir*, SIG_R*
With RC=Cookie-function(Ni, Nr, KEr, SAr)
Traffic SA and [CERT*,] payloads omitted
```

# Comparison

```
Measures:
Security/analysis
DoS: adaptive, built in, cookie gen/ver cost
Id prot: I/R active/passive, transferable proof
Performance (computation)
Round trips
      SIGMA-I
               | SIGMA-R | SIGMA-4
                                       JFK
                 (IKEv2')
Sec | proof
                         | proof | proof [1]
               proof
               | passive | passive | active[2]
IDi | active
IDr | passive
              | active | active | none
DoS | adaptive | adaptive | built-in | built-in
Perf | min-PFS | min-PFS | min-PFS
                                    | +1 sig/ver
     shrt-cky | shrt-cky | long-cky | long-cky
        2(3)
                  2(3)
RTs |
                              2
                                         2
[1] but high cost: decreased pfs, weak privacy
 (R's id revealed + proof of comm), performance-
```

[2] lost if (r,SIG(g^r)) ever exposed

#### Dual use of MAC

- Two functionalities for MAC
  - 1. core authentication security of the protocol (identity-key binding) see Slide 9
  - 2. identity protection against active attackers (requires integrity mechanism on top of encryption)
- Cleaner and robust: separate the two MAC's:
  - basic principle: keep core authentication independent of id protection
  - example: what if ID not included under encryption, or under a MAC-ed message?
  - use ESP for id protection (save re-specifying ENC modes and algorithms)
  - separation also allows for non-MAC-based ESP specs [Jut01]
- What is the cost of separation? A one-block SHA-1 computation!

# A summary of MAC options

- 1. ENC{Ke}(..., ID, SIG,...), MAC{Ka}(ciphertext) secure ONLY if ID is under ciphertext
- 2. ENC{Ke}(...,SIG,...), MAC{Ka}(ID,ciphertext) explicit inclusion of essential ID under MAC; does not depend on ID position in the protocol (e.g. if sent in the clear in the first message)
- 3. Two MACs (with clearly differentiated goals):
  - one for essential protocol security: MAC{Ka}(ID) (or included under SIG as in current IKE: SIG(MAC{Ka}(ID, other-signed-info))
  - another for ciphertext protection only:

    MAC(Ka)(ciphertext) (as in item 1)

    (allows use of any confidentiality+integrity protecting ESP transform)

Cost of additional MAC: a one-block SHA-1 computation

#### "Exercise": rationale for IKEv2

Stage 1: exchange DH and SA negotiation

Stage 2: authenticate DH exchange and SAs

Identity protection omitted (since core exchange authentication does not depend on it)

Stage 3: derive keys (Ka) from  $g^{ir}$  and use them to protect ipsec transform negotiation

```
HDR*, SA, TSi, TSr --> <-- HDR*, SA, TSi, TSr
```

#### Rationale flaw and solution

Above rationale is flawed:

- 3-stage protocol is **insecure** (why? hint: DVW)
- security is "miraculously" saved by the piggy-backing of stage 2 on stage 3 (hint: SIGMA)

**Lesson:** Define <u>exact</u> inputs to SIG and MAC (explicitly ensure essential elements)

**Recommendation:** Make explicit that ID goes under the MAC (regardless of ID's position in the protocol); sign everything you send and the other party's nonce.

# Pre-Shared Secret Key

#### Based on any of the SIGMA variants:

- just do not use the signature (but MAC only)
- How to identify the shared key without revealing I's id:
  - (i) point to the shared key via a key-id (static or dynamic) passed in first message, or
  - (ii) derive  $K_e$  directly from  $g^{xy}$ 
    - option (i) gives active protection to I and R,
       option (ii) gives passive to I
- superior defense against DH cryptanalysis
- shares all protocol mechanisms with sig mode! (adds minimal complexity)
- intended for use with <u>strong</u> keys (machine generated and stored); many applications...