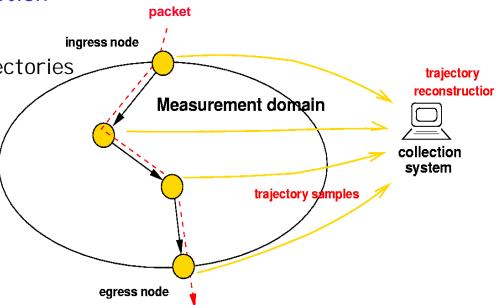
Packet Hashing and Sampling Applications

Nick Duffield

AT&T Labs


nduffield@att.com

Trajectory Sampling

- Basic I dea
 - → router calculates hash (digest) of invariant packet fields
 - invariant = fields that don't change per hop; exclude TTL, checksum
 - → select packet if hash falls in a specified range
 - → each router uses same hashing function
- Consequence: Trajectory Sampling
 - each packet is sampled either everywhere or nowhere
- Reporting and Trajectory Reconstruction
 - routers report samples to collector
 - → direct reconstruction of packet trajectories
 - from reported samples alone
 - → no routing state info required
 - sidesteps network state uncertainty
 - latency/synchronization
 - randomization/load balancing
 - → in real time

→ AT&T may own intellectual property applicable to this contribution

Applications

- Network engineering
 - → map traffic flows onto network topology
 - → actual traffic intensity = sampled traffic intensity / sampling rate
- Performance measurement
 - → trajectory terminating in core ⇒ packet loss
- Real-time anomaly detection
 - → self-intersecting trajectories ⇒ routing loop
- Network probing
 - → specify packet content so that it is sampled

Standardization Issues

- Multi-vendor domains
 - → packet selection depends on choice of hashing function
 - ★ therefore need common hashing function across domain
- Need realistic requirements
- Hashing function requirements
 - → more computational cycles ⇒ better hash function
 - hash appears uniformly distributed
 - good specification of sampling rate
 - implementation issues: needs computational resources
- Hashing function input requirements
 - → more packet fields used as input ⇒ better statistical properties
 - hash appears uncorrelated with any given packet field
 - sampling decisions appear statistically random
 - → implementation issues: needs fields available

Related packet hashing application

- ☐ IP traceback (Snoeren et. al.)
 - → aim: trace path of packet with spoofed source IP address.
 - → each node: calculate multiple hashes of each packet
 - → store compactly (Bloom filter)
 - → upon network attack: collect filters centrally
 - → attempt match suspicious packet against each filter
 - → use matches to identify packet path
- Role for PSAMP
 - → provider of packet measurements
 - → router compute hashes
 - → exports them locally to on-board IP traceback application