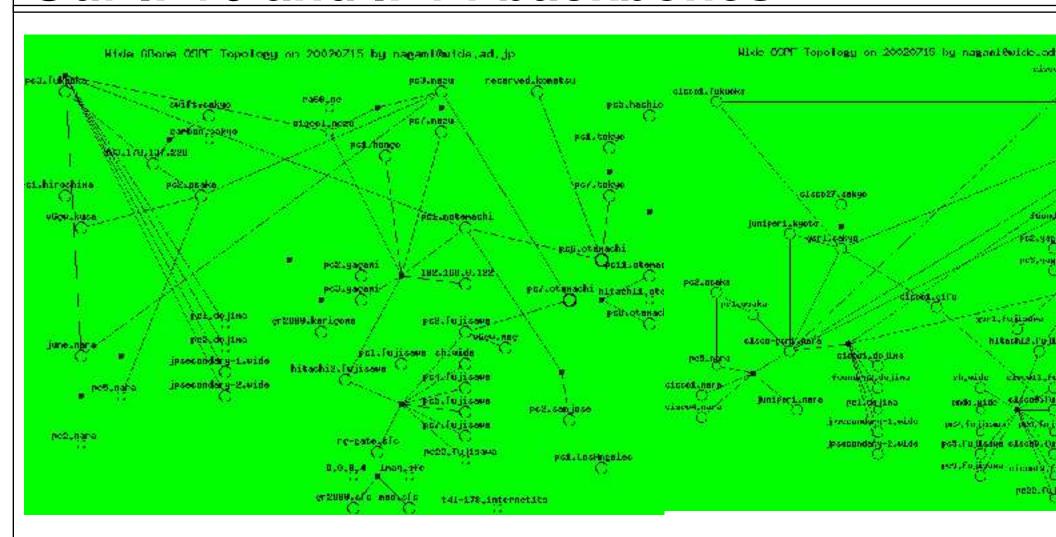
IPv6 Implementation and Deployment Experiences

54th IETF, IESG open plenary


JINMEI, Tatuya
Toshiba Corporation, The WIDE/KAME project
jinmei@{isl.rdc.toshiba.co.jp, kame.net}

What's WIDE/KAME wrt IPv6?

□ An implementor as well as an operator

- Implementor hat:
 - oprovide free running code of IPv6 to help deployment
 - ♭ fill missing pieces
 - check validity and applicability of specs
- □Operator hat:
 - orun a nation wide, large IPv6 network in WIDE
 - ⊳over 50 routers in the backbone (as large as our IPv4 BB)
 - ⊳more than 60 "/48" sites
 - ⊳more than 40 EBGP peers

Our IPv6 and IPv4 backbones

What we are using on IPv6 (1):

- Today's typical Internet applications
 - owww, mail, FTP, SSH, ...
- □ Network operation tools
 - DNS, ping, traceroute, firewall
- □ Routing protocols
 - ∘RIPng, OSPFv3, BGP-4+, (PIM-DM), PIM-SM
- □IPsec
 - ofor end-to-end communication (e.g. POP with IPsec)
 - omainly in transport mode

What we are using on IPv6 (2):

- □ IPv6-specific stuff
 - Transport Relay Translator
 - node information queries
 - ⊳for address-to-hostname resolution
 - site-scope anycast
 - ⊳ for DNS server discovery
 - oprivacy extension of stateless autoconf
 - ∘6to4
 - we are not using it in our backbone, but we've developed it and we know there is a certain amount of users.
- □IPv6 links
 - Ethernet, ATM, serial line, tunnel, PPP

Not implemented, but have a plan (including ongoing ones):

- □ Necessary for IPv6 deployment
 - mDNS (LLMNR), IPv6 prefix delegation, "killer applications"
- Missing pieces
 - ∘SSM
 - omobile IPv6
 - worried about the standardization status and procedure, though:
 - more and more revises
 - btend to require ALL nodes "support mobile nodes this way".
- □ Need to check how it works:
 - oSCTP, VRRP, ISATAP, multi-sited node

Implemented, but not used:

- Router renumbering
 - owe were not convinced that it was effective
- □NAT-PT
 - Transport Relay Translator is enough for us
- □DHCPv6 for DNS server discovery
 - owe could not (always) assume multicast routing
- □Some DNS extensions
 - A6/DNAME/bit labels (they were just deprecated.)

Not implemented, and no plans:

- □ Stateful address autoconf (by DHCPv6)
- Some of transition mechanisms
 - oincluding SIIT, DSTM, and Teredo
- □Why not?
 - owe've not seen real need for them.
 - (see the next slide as for transition tools)

Translation/Transition mechanisms

- We are only using simple transition mechs:
 - oconfigured v6 over v4 tunneling
 - but only when the benifit outweighs the overhead much.
 - ⊳esp. for BGP peering.
 - otransport-relay (v6 to v4) translator
 - bto browse IPv4-only web sites from an IPv6-only network.
- Perhaps these are enough;
 - owe can even avoid translators when v4NAT is available.
 - oif we really need complicated tools, users may reject the transition.
 - we may be wrong, of course, but we've been operating our network thi way.
- No clear image on tools after IPv6 is fully deployed

IPv6 scoped addresses

- Link-locals
 - onecessary for operation, and in some cases very useful
- □ Site-local unicast/anycast
 - ousing site-local anyast for DNS server discovery
 - using site-local unicast for IBGP peerings
 - •we can live *without* them and have not seen real need, though
 - ono experiences on multi-site node
- Scoped multicast (other than link-local)
 - oin use for multicast streaming
 - experimentally tried for DHCPv6 and router renumbering
 - odo not have an essential reason for narrower scopes

Network configuration and management

- Dual stack env. may introduce confusion
 - "telnet localhost" does not work, when the client only tries
 127.0.0.1 and the server only accepts ::1.
- source address selection is more complicated
 - o(e.g.) mismatches of BGP peer addresses can happen.
- DNS PTR RRs
 - owe cannot pre-register all IPv6 addresses in a subnet;
 - o"dhcp101.kame.net" doesn't work for IPv6.
- □ Scoped addresses
 - (e.g.) link-locals are very useful for operation, but the notion is very confusing;
 - onovice operators often forget disambiguating the link.

IPv6 security

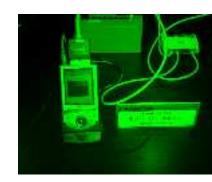
- Firewalls will remain, but the model needs a change;
 - we cannot just drop incoming SYNs.
 - ▶IPv6 will introduce many bi-directional communications
 - oper-host security will be more and more important.
- Applicability of IPsec should change
 - otoday (for IPv4): mainly for VPN, thus tunnel mode
 - ofor IPv6: more and more end-to-end usage will come.
 - mainly transport mode.
 - key management can be much harder
 - ▶an "ad-hoc", easy-to-use secure pipe will meet the requirement, rather than a solid security infrastructure.
 - ⊳c.f. ssh

What is missing that really hurts?

- □"Killer applications"
 - IPv6 will only be for geeks without apps appealing mass users.
 - P2P apps can be the ones, but most of them only support IPv4.
 - some of the implementation highly depend on IPv4.
 - beducational issues may exist.
- □Solid APIs
 - lack of portability wrt the basic API
 - loss of compatibility of the advanced API
- □ Security products
 - ocorporate operators tend to use commercial products.
 - oall-in-one boxen are necessary for "home" users.

IPv6-only fun things

□ Dancing turtles:-)



- □ Basically v4 and v6 provide the same stuff
 - ohowever, IPv6 can enlarge the opportunity;
 - beveryone can enjoy the apps
 - ⊳no upper limitation on the number of nodes

Apps demonstrated in N+I Tokyo 2002

□ Cameras, TVs, games, cars, PDAs, home appliances, ...

And we'll try

- to provide applications that can be more effective in IPv6.
 - P2P or multicast apps are examples
- to encourage developers of such apps to support IPv6 in their products.
 - ofree software programmers, game/appliance vendors...