SRTP Security Issues

- Current profile has unusual design features
 - AES Counter Mode
 - Choice of MACs
 - HMAC-SHA
 - 32 bit HMAC-SHA
 - None!
- These don't make sec guys comfortable

Why do things this way?

- Latency
 - Shorter packets mean less latency
 - For voice
 - MACs consume bandwidth
 - So do IVs
- Errors
 - Wireless channels are often noisy
 - With integrity bit errors mean total packet loss

What's the problem?

- Counter mode has no integrity protection
 - Easy to make predictable changes
 - Especially if you have known plaintext
 - Very desirable to have a MAC
- But the MAC is optional
 - And the standard MAC is weak
- The threat
 - Modified message streams
 - Forged traffic
 - Big problem for other kinds of media

Option 1: FEC

- FEC after encrypting/MACing
 - Then reconstruct before verifying
 - This isn't perfect
 - Expands the packet somewhat
 - Won't fix all bit errors
 - (There is a tradeoff here)
 - But we don't have numbers for the impact

Option 2: Two Sets of Transforms

- Partial integrity--for wireless voice
 - Mandatory integrity protection over the control data only
 - Larger packet sizes
 - Same bandwidth and latency as full-packet integrity
 - But less sensitive to damage
 - How sensitive depends on message size
- Full integrity -- for everything else
 - An 80-bit MAC should be fine
 - The spec says 128
 - This should be the default

AD Bottom Line

- Spec revision
 - Current transform made optional
 - Tied to wireless voice (AMR/AMR-WB?)
 - New transform definitions (default)
- Timeframe?