Some thoughts on CoS and Backbone Networks

David Meyer
ieprep, 55th IETF
Atlanta, GA
Agenda

- What Sprint is doing
 - What it is
 - What it isn't

- Is QoS required in an internet core?

- http://www.maoz.com/IETF55/ieprep
What Sprint is Doing

- Idea: "Edge QoS" (aka eQoS)

- Start with a congestion free core (no queues)

- Do queuing (customer configured) on the edge box
 - Only on egress from our network
 - Using ACLs to avoid ToS bits (except for IPsec VPN)
 - IPsec VPN -- case TOS bits
 - If those bits encrypted --> per CoS tunnels
 - Need ToS bit export (to IPsec header) to use single tunnel

- Note "problems"
 - Ingress v. egress
 - ACL scaling
 - DoS
What Sprint is Isn't Doing

Respecting any bits other than destination address in the core
Why you don't need QoS in the core

- Start with the result that aggregated traffic in the core (>= OC48) is "uncorrelated"

 - Many others...e.g., Thomas Telekamp's talk(s) from the last NANOG (http://www.nanog.org/mtg-0210)

- So you can actually build (provision) a network to avoid queuing

 - Oh, and BTW, if you do this, you get close-to-zero packet loss, close-to-speed-of-light delays, and small jitter

 - With no additional mechanism!
So what would QoS mean anyway?

- Caveat: The following graphs are for a system having a Poisson arrival process and exponentially distributed packet sizes (so I could use gnuplot :-))
 - And...while this isn't a perfect model of Internet traffic, it is a reasonable approximation and makes the associated math much easier (M/M/1 model)
 - http://ipmon.sprintlabs.com/paccess/tr/public/TR02-ATL020312.pdf has supporting empirical results

- So... they are meant to show the effect of increasing bandwidth on queuing delay
 - And NOT to be a statement about actual queuing delay

- As such, the following graphs do a good job of showing the general behavior
Queuing Delay vs. Utilization, T3
Queuing Delay vs. Utilization, OC12
Queuing Delay vs. Utilization, OC48
E-model ratings/MOS Scores

- We studied the ITU-T E-model (G.107, a subjective measure of call quality based on measurable parameters (delay, loss, jitter))
 - Range: 100-0, with 100 best, 0 worst
 - PSTN: 100-70
 - Cellular: 90-60

- Briefly, methodology:
 - Calls are placed at random times (Poisson arrival process), and we emulate business call duration (~ 3.5 minutes)

- In the following graph...
 - The blue line is the average call rating
 - 1 call/minute for 24 hours
 - The red line is the 99.9% confidence interval
E-model ratings/MOS Scores

East Coast to West Coast

Call Rating vs. Time (UTC)
Questions/Comments?