

RID IETF Draft Update

Kathleen M. Moriarty

Interim INCH Working Group

13 June 2004

This work was sponsored by the Air Force under Air Force Contract Number F19628-00-C-0002.

"Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government."

MIT Lincoln Laboratory ——

RID Updates

- Purpose
- RID and INCH
- Messaging Format for RID
- Define Extensions to IODEF Model
- New Extension for Policy and Trace Continuance
- Communication Mechanism for RID Documents
- Security Considerations

- Trace Security Incidents to the Source
- Stop or Mitigate the Effects of an Attack or Security Incident
- Facilitate Communications between Network Providers
- Integrate with existing and future network components
 - Systems to trace traffic across a network
 Intrusion Detection Systems
 NetFlow, Hash Based IP Traceback, IP Marking, etc.
 Network devices such as routers and firewalls
- Provide secure means to communicate RID messages
 - Consortiums agree upon use and abuse guidelines
 - Consortiums provide a key exchange method
 Trusted PKI, certificate repository, cross certifications

- RID is used to communicate security incident handling information between CSIRTs or NPs
- RID carries much of the same data as an IODEF document
- RID requires a few additional data elements
- Communication and proper transport of messages is in the RID specification
- RID is now reformatted to use the IODEF specification
 - Packet based format to IODEF document
- RID message types
 - XML IODEF document with RID extensions
 - SOAP Wrapper
 - Transport via BEEP or HTTP

RID Extensions to IODEF

- AdditionalData Class from IODEF used to define Extensions
 - IPPacket Class
 - Allows hex packets to be stored in the RID message in a format that will be expected by the recipient of a RID message
 - Multiple packets may be sent in a single message
 - NPPath Class
 - Purpose is to identify the path of the trace and to avoid loops
 - TraceStatus Class
 - Method for providing approval status from upstream peer after a trace request is made
 - RIDPolicy
 - Method to determine via RID messages if trace should be continued between NPs Policy negotiations for RID messages
- Reliability of the trace type requested
 - Some NPs may have multiple choices for traceback
 - Method needed to decide which of several methods should be used by the percentage from the originator of request
- Level of trace required
 - RID systems need to reference the IODEF expectation class to determine how fast of a trace mechanism should be used
 - The start time and end time can be used to determine if a fast method of tracing or a slow and more detailed trace mechanism can be used

RID Policy

- RID Policy
 - New extension to ensure that policy information is transferred between participating RID peers
 - Policy information in RID to prevent policy related issues from relying on the transport mechanism for enforcement

RIDPolicy Information

- Extension to define the type of trace
 - IODEF Method and Impact class information should be considered for the type of traffic requested for trace and the success of an attack
 - Explicit statement for the type of trace requested in case it does not fit into the category of attack traffic and can be linked to a CVE or other identifier
- Identifies where the traffic may have policy issues
 - **Client to NP**
 - NP to client
 - Within a consortium
 - Between peers
 - Between consortiums
 - Across national boundaries
- Purpose is to try to prevent abuse of the system
 - Address security, confidentiality, and privacy concerns listed in the draft
 - New extension created to address issues raised at IETF-59

Communicating RID Messages

- SOAP Messaging Wrapper and XML Security
 - Method to transport messages
 - Policy negotiated in RID message and not wrapper
 - Provide integrity, authentication, authorization
 - XML digital signature, encryption, and public key infrastructure Encryption of RID for privacy and security reasons should be via XML encryption and not through the security provided by a wrapper or higher level protocol
- Public Key Infrastructure
 - Provided by consortiums linking network providers for RID messaging
- Message Types
 - Trace Request
 - Trace Authorization
 - Source Found
 - Relay Request
- RID Systems Must Track the Requests by
 - Incident Number
 - Packet Contents
 - Completion Status

Security Considerations

- Consortiums
 - Agreements between entities involved in RID peering
 - Provide a secure key exchange repository/system (PKI)
 - Peering agreements and policies between consortiums and across national boundaries or jurisdictions
 - Policy enforced through RID messages by stating level and type of trace
- System use guidelines
 - Privacy considerations
 - Abuse policies
 - Use policies may vary across national network or consortium boundaries

Automated method to allow enforcement of use agreements

- **RID server security policies**
 - Network based access controls
 - Hardened systems
- Communication security considerations for the exchange of RID messages and the underlying protocols

Summary

- Updates from the previous version
 - Extended the AdditionalData Class to accommodate the needs of RID messaging and RIDPolicy
 Extended information on system use and privacy considerations
 - PKI at the core of the security model, but provided by a consortium
 - Topology examples to address implementers questions
 - DTD moving to schema format
- Near Future Update will include
 - SOAP wrapper and more information on XML Security
 - May include additional examples of other message types
 - Any suggested revisions or clarifications
- <u>http://www.ietf.org/internet-drafts/draft-ietf-inch-rid-00.txt</u>