Stackable GSS Pseudo-Mechs

draft-williams-gssapi-stackable-pseudo-mechs-00
Nicolas.Williams@sun.com
60" IETF KITTEN BoF



History

2000: LIPKEY [RF(C2847], basic-over-SPKM

Early-2003: CCM-BIND (I-D), first stackable
GSS-API pseudo-mechanism

58" IETF: hallway discussion of mechanism
stacking resulted in:

— Need for abstraction
— Ideas for other stackable pseudo-mechs

— Need to think about negotiation, complexity

60" IETF: 1* I-D on stackable pseudo-mechs



Glossary

e Concrete mechanism e Stackable pseudo-mech
— A GSS-API mechanism — A mechanism that is to
that can be used as is be “stacked above” or

combined with a

composite or concrete
— A GSS-API mechanism mechanism

that cannot be used

without reference to a

concrete mechanism; — A combination of a

e.g., SPNEGO stackable and a
composite or concrete
mech

e Pseudo-mechanism

* Composite mechanism



Introduction

 The GSS-API is a generic interface to security
mechanisms

— Mechanisms are addressed by their OIDs

- Mechs define: context tokens, per-msg context
tokens, and sundry GSS details, such as name forms

e GSS mechanisms exist for: Kerberos V, PKIX
(SPKM), and others, such as Microsoft's
NTLMSSP, Sun's mech dh

* GSS pseudo-mechanisms exist for: negotiating
mechanisms (SPNEGO)



Introduction (cont.)

 In the process of developing a new lightweight
GSS-API pseudo-mechanism for NFS we
expanded on the GSS-API notion of channel
bindings and the new mechanism (CCM-BIND)

came to be about channel bindings

e At the same time we developed the notion of GSS
mechanism stacking so we could leverage
existing GSS mechanisms in the construction of
new ones

- CCM-BIND being one example



Introduction (cont.)

* Composite mechanisms have OIDs, just like any
other mechanism

— Composite mech OIDs are made by prefixing the OID
of the stackable mechanism to that of the mechanism
stacked below it

e Stackable mechs can be stacked over other
composite mechs, making a stack

 Composite mechs are used just like concrete
mechs



LIPKEY: Almost a Stack

 LIPKEY is a GSS mechanism that does the
SPKM equivalent of basic-over-SSL

— LIPKEY first uses SPKM-3 to establish a security
context that authenticates the acceptor (using its cert)
but not the initiator

— then it sends the initiator's name and password
confidentiality protected with the SPKM-3 context

 But LIPKEY is not an example of a stackable
pseudo-mech, though it could have been

— No OID prefixing; LIPKEY only works over SPKM



Ideas for Stackable Pseudo-Mechs

Proper channel binding and negotiation
- CCM-BIND
PES

Compression
Basic-over-*
Three-party authentication

etc...



Example: PFS

Let's call this the PEFSMECH
PFSMECH context tokens might contain:

— Context tokens for mech stacked below
— DH public parameters
PFSMECH would have its own per-msg tokens

— Perhaps based on existing design, such as krb5's

One PESMECH OID prefix per-{group,
ciphers}? Or other scheme?

— This would eschew GSS-API lameness w.r.t. QoPs



Problems

e Not all mechanism stacks will make sense

— {pfs, compress, krb5} is no good, but {compress, pfs,
krb5} is Ok

e Complexity
— Many valid composites

- How to negotiate mechanisms?
 GSS Indicate mechs() and friends



Problems (cont.)

e Security analysis of composite mechanisms

— What combinations make sense, which don't?

— What are the attributes of a composite mechanism?



Solutions

 GSS Indicate mechs() and friends MUST NOT
indicate stackable mechs

 GSS Indicate mechs() and friends MUST NOT
indicate composite mechs unless explicitly
configured to do so (and even then...)

 Add new APIs for indicating stackable/
composite mechs



Solutions (cont.)

e Users of composite mechs know what features
they want from them, but why should they know
the OIDs of the composite mechs they need?

— Add APIs for inquiring mechs for/by their attributes
e These new APIs are all OPTIONAL

- Without them apps have to hardcode composite mech
OIDs — no big deal

e Mechanism attributes have OIDs and symbolic
names (GSS C MA *)




Solutions (cont.)

e Stackable pseudo-mechanism specifications
should describe

— Constraints on mechanisms, by attributes, that can be
stacked below

- How to compute the attributes of mechanisms
composed with them in terms of the attributes of the
mechanisms stacked below



Benefits of the New APIs

* No need to hardcode mechanism OIDs anymore

- e.g., SSHv2 implementations MUST NOT use
SPNEGO, but SPNEGO might get new OIDs[*]

e Let SSHv2 implementations query for/by mechanism
attributes and ignore any mechs that negotiate mechs

 Mechanism attributes give us a way to formalize
the descriptions of mechanisms

— Hardcoding attrs' symbolic names is better than
hardcoding mechanism OIDs; see above



Benefits of the New APIs (cont.)

e Indicating mechs by attributes makes GSS-API
applications more general

— Unless the new mech-specific GSS-API extensions



New APIs

GSS Indicate mechs by attrs()

GSS Inquire mechs for attrs()
GSS Display mech attr()

utl

util

1ty |
ity |

GSS Compose OID()
GSS Decompose OID()

GSS Indicate negotiable mechs()
GSS Negotiate mechs()



Mechanism Attributes

Concrete, stackable, composite, glue[*], other

Deprecated (e.g., old krb5 mech OID), non-
standard (e.g., GSI's SSL. mech)

Authenticates initiator, acceptor, both, neither
Supports credential delegation

Supports confidentiality and/or integrity
protection, replay, out-of-sequence detection

PFS, channel bindings, compression
Etc...



Mechanism Attributes (cont.)

« GSS C MA *

e Mech attrs are identified by symbolic names and
OIDs

— So that SET OF mechanism attributes is SET OF
OBJECT IDENTIFIER

— Which leverages existing C-Bindings for OID sets
e Keeps the API simple, stupid



Internet-Drafts

e draft-iett-nfsv4-ccm-02.txt

 draft-williams-gssapi-stackable-pseudo-mechs-
00.txt



Q/A

e (Questions?

 Please review



