IAB Security Workshop Retrospective

IAB Plenary

IETF 60

Thursday, August 5, 2004

Acknowledgments

- Many thanks to Steve Bellovin for his thoughts and recollections.
- Any errors or omissions are the responsibility of the presenters

RFC 2316 – A Synopsis

- Report of the IAB Security Architecture Workshop
 - Held on March 3-5, 1997 at Bell Labs in Murray Hill, NJ
- Goals
 - To identify the core security components of the Internet architecture
 - To specify documents that needed to be written.
 - To provide useful security guidance to protocol designers.
- Points of agreement
 - Agreed that security was not optional and that it needed to be designed in

1997: The Good Old Days...

8/6/2004

4

What Hasn't Changed

- Trends
 - Rate of attacks is increasing
 - The attackers have gotten smarter
- Several conclusions of RFC 2316 are now common wisdom
 - Security needs to be built in
 - IETF needs to become more serious about security considerations
 - IPsec is not a panacea
 - No cleartext passwords
- Few new security mechanisms

What Has Changed

- Scope and sophistication of attacks has grown dramatically
- Money now a significant motivation for exploitation of security vulnerabilities
- Increase in peer-to-peer protocol designs vs. client/server
- More multi-party protocols (SIP, AAA, etc.)
- Authorization increasingly important
- Most serious vulnerabilities are now at the application layer
- All this implies an evolution of the threat model

Threat Model Evolution

- Old model: classic communications security threats
- New model
 - Can an attacker make money by exploiting a vulnerability?
 - Via "social engineering"? (phishing)
 - By targeting a high profile user? (blackmail)
 - Can an attacker cause havoc on a regional/national scale?
 - By attacking infrastructure?
 - By denying critical services?

Mechanism Retrospective

- Core
 - DNSSEC not deployed
 - DNS Key RR now deprecated (opponents were right about trust model mismatch)
 - IPsec/ISAKMP not as widely deployed as expected/desired
 - TLS has been widely deployed
 - S/MIME not widely used
 - Though widely available
- Not core
 - Kerberos, RADIUS growing in popularity
 - SASL, EAP, GSS-API alive and well (work still ongoing)

Deployment Lessons

- Ease of use a significant consideration
 - SSH, SSL/TLS: easy to deploy
 - SASL, EAP: easy for developers
- Deployment at the edge is easier than in the core
 - Edge: Client VPN
 - Core: Router Security
- Mechanisms requiring coordination are intrinsically more difficult to deploy
 - Examples: PKI, DNSSEC, S/MIME, PGP

Lessons of ISAKMP

- Complexity is the enemy of ease of use
 - How do I explain an SPD to my users?
- General purpose crypto frameworks are hard to design
 - Authorization issues may make it difficult to handle all problems
 - Service definition may differ:
 - Restart vs. Child SAs
 - Machine vs. User Certs
- Will we relearn these lessons with frameworks like GSS-API, EAP, SASL?

1997: Missing Pieces

- Object security
 - We have the protocols.
 - Usage in specialized applications (e.g. Authenticode)
 - General purpose toolkits are lacking.
- Secure e-mail
 - A demand problem.
 - Requires large scale changes in operations as well as user behavior.
 - Is implementation quality an issue?
- Routing security
 - Some progress here.

2004: Missing Pieces

- Peer-to-peer security mechanisms
- Multi-party protocol security
 - Understanding trust models
 - Breaking the problem into known solvable problems
- DDoS
 - How do we design a protocol that's more DoS resistant?
 - Are there network mechanisms to prevent DDoS?
 - Pushback, etc.
- Phishing
 - Are there authentication mechanisms that will help?

Are We Working on the Right Problems?

- What are the most serious Internet security problems?
 - Spreading malware
 - Zombie networks
 - DDoS
 - Spam
 - Phishing
- All of these are related
 - Its not just the vulnerability of components or individual protocols.
 - It is also their manner of interaction.
 - Looking at components in isolation got us where we are today.
- These issues are not addressed by COMSEC
 - They're system and software security problems.
- Is the IETF adequately addressing new threats in Security Considerations sections?
 - Communications security threats vs. threats to the life and livelihood of millions

orbis.com

Identifying the Threat Models of Today's Internet

- Look beyond the immediate problem
 - Don't just patch the current bug
 - Does this vulnerability expose other vulnerabilities?
 - Can this fix be used to solve other problems?
- Document your dependencies
 - "This protocol assumes that protocol X functions correctly"
 - Look for cascading failures
- Understand large scale risks
 - The Internet is increasingly critical infrastructure
 - Monetary incentives can overcome difficulties in exploiting vulnerabilities
 - Epidemics spread fast, and develop immunity to countermeasures

Feedback?

