IETF-61 L2TPEXT Workgroup

Washington, 09-Nov-04 Graceful Restart Mechanism for L2TPv3

draft-galtzur-l2tpext-l2tpv3-gr-02.txt

Sharon Galtzur

What This Is About

Terminology:

- L2TPv3 Control State:
 - Control connection state (including its reliable delivery mechanisms)
 - Association between a control connection and sessions
- L2TPv3 Forwarding State (per session):
 - Association between the session and its local attachment circuit
 - Source and Destination IP addresses (from the control connection)
 - Session State (Idle, Established etc.)
 - Session ID (local and remote)
 - Cookies (local and remote)
 - Sequence numbers (next number to send, next expected number to receive

What This Is About (2)

- Use Case:
 - L2TPv3 Control State is lost, but L2TPv3 Forwarding State is preserved
- Normal Situation:
 - Forwarding state is reset due to loss of control state
 - The traffic stops
 - Traffic will only be resumed after the control connection and all the sessions have been re-established
- Objective of the Graceful Restart
 - Restart the control plane without affecting the forwarding state
 - Ideally, the customer traffic should not be disturbed at all
 - Follow the trend set in RFC 3478 for LDP

How This Can Be Achieved

- Behavior is split between the two peers:
 - LCCE that has lost its control state ("restarting LCCE")
 - The peer of the restarting LCCE
- The peer of the restarting LCCE detects loss of control connection
 - Postpones breaking the associated sessions:
 - The timeout is agreed upon by the restarting LCCE and its peer during establishment of the (now lost) control connection
 - All the sessions are marked as "stale"
 - Once the control connection is restarted, allows to reestablish "stale" sessions in the new control connection without affecting the forwarding state
 - No need to restore the broken control connection itself!

How This Can Be Achieved (2)

- Restarting LCCE:
 - Collects the forwarding state of all the sessions
 - If it did not survive the restart, there is nothing to preserve
 - Establishes a new control connection to the peer(s) and indicates that it has preserved the forwarding state
- Re-establishment of stale sessions can be initiated by any of the two peers
 - Mainly, follow the the normal procedure for session establishment with the following modifications:
 - Stale sessions transit to Established upon completion without any changes in the Forwarding plane but become associated with the new control connection
 - Stale sessions that have not been re-established within the agreed upon timeout will be broken

How This Can Be Achieved (3)

- Protocol changes:
 - Two new AVPs
 - Graceful Restart AVP [SCCRQ, SCCRP]
 - Graceful Restart Session AVP [ICRQ, OCRQ]
 - One new Session state ("stale")
 - Only minimal changes to the control connection and session state machines
 - No new security issues
 - The same security methods as in the "native" L2TPv3
 - The forwarding state will not undergo any change
- Partial Graceful Restart Support
 - It is possible to participate in the graceful restart of a peer even if local forwarding state cannot be preserved across the local control plane restart

Optimized For

- Separation between Control and Forwarding plane elements in the restarting LCCE
- Zero down time for the customer traffic
- L2TPv3 running directly over IP
 - No need to preserve the Tunnel/Control Connection Ids or UDP ports
 - The typical case for PW applications
- Minimal intervention in the protocol operation
- Hub-and-Spoke topologies:
 - Low-end Spokes support high-end Hub graceful restart
- Minimization of security risks
 - Graceful restart uses the same set of security procedures as the normal operation

Not Optimized For

- The overall Control Plane restart time
 - Not so important as long as the customer traffic is not affected
- The Control Plane CPU consumption
 - Not really important if the Control and Forwarding plane are separated
 - Not important in the Hub-and-spoke topologies
 - High-end Hub benefits from separation
 - Low-end Spokes do not maintain so many sessions each
- The Control Plane traffic bandwidth consumption
 - The amount of traffic is the same for graceful restart as for the LCCE power-up
- L2TPv2 and L2TPv3 over UDP
 - Simply will not work

Questions?

