
1

Reachability & Failure Detection

draft-ietf-shim6-failure-detection-02.pdf

Jari Arkko
Iljitsch van Beijnum

IETF-64



2

Outline

• Status & history
• Protocol walkthrough
• Issues



3

Status and History

• Draft 02 is largely in good shape
• Except for the actual protocol 

behaviour…



4

History of the Protocol

• Original version in -00 from prior IETFs
– Details largely missing

• Iljitsch’s draft made us understand reachability part 
better
– FBD chosen

• Version -01 for the interim attempted to go provide 
the detailed behaviour
– Had some trouble writing pseudocode or state machine
– Critique from the Interim meeting

• Version -02 based on interim discussions
– Reachability and exploration in the same messages
– Had some trouble describing a state machine



5

History of the Protocol, Continued

• Erik’s simplified description
– Avoids the state machine
– Had some trouble writing down all the details
– Protocol has still holes

• IETF-64
– Using Erik’s model as a basis
– Attempting to write down the details (not complete yet)

Note: the protocol that we are so hard trying to describe has one (1) 
message which contains one (1) bit of information relevant for 
behaviour



6

Protocol Design & Walkthrough



7

Scope of the SHIM6 work

B

A

DHCP Policy

SEND

NUD

SHIM6 ...

R1

GPRS
phone

SGSN

BSS

GGSNR2
BT IrDA

AP1

AP2

PPP
IPv4

IPv6
TCP

ESP

DNA 802.3

802.11

802.21

SHIM6 protocol
specification

Information available
locally



8

Design Decisions

• Multi6 does not go to the area of the configuration 
modules or protocols -- we shall not reinvent DHCP, 
and we shall believe what ND tells us

• Own addresses learned locally, peer addresses are 
communicated

• Multi6 only works as a fail-over, Erik’s model:
– Separate hosts don’t share locators to same peer
– A pair of communicating hosts can have multiple contexts 

(for separate ULID pairs) with independent locator choices

• FBD is chosen for simplicity
• Sender chooses outgoing address pair 

(independently from the other direction)



9

Other Design Goals

• Efficient
– No packets sent if payload traffic is idle
– No packets sent if bidirectional payload traffic
– Packets sent only if (a) there’s a failure or (b) there’s 

unidirectional traffic

• Handles unidirectional failures
• Construct the protocol so that it provides return 

routability verification at the same time
• Provide a separable component that might be 

possible to use in other contexts



10

Definitions and Background

• Available addresses
• Locally operational address pairs
• Operational address pairs
• Unidirectionally operational address pair
• Current path



11

Reachability vs. Exploration

• Verifying reachability of the current 
locator pair(s)

• Exploring for an alternative locator pair 
when failure is suspected



12

Protocol case 1 - Idle

A B

If you are not sending or receiving payload packets, assume
path is OK



13

Protocol case 2 - Bidirectional Traffic

A B

Payload packet

Payload packet

If you send and receive payload packets, assume
path is OK



14

Protocol case 3 - Unidirectional 
Traffic

A B

Payload packet

Keepalive (id=10)

If you are receiving payload packets but not sending within t,
assume path is OK but send an event message



15

Protocol case 4 - Unidirectional Failure

A B

If you are sending payload packets but not receiving anything,
request peer to explore other return paths. Return path failure:

Payload packet

Event (id=10, seen={}, iseeyou=no)

Payload packet

Payload packet

Payload packet

Payload packet

...

Ret.path
failure

Timer
fires



16

Case 4 continued

A B

Event (id=20, seen={10}, iseeyou=yes)

Event (id=21, seen={10}, iseeyou=yes)

Event (id=11, seen={21}, iseeyou=yes)

Payload packet
Payload packet
Payload packet
Payload packet



17

Behaviour in the General Case

• State machine in -02
• The simplified description
• The hard parts are

– Given unidirectional connectivity, we can 
not use request - response

– Stopping exploration when both parties are 
happy

– Anything can happen at any time



18



19

The Simplified Description --
Reachability Part
keepalive-t to fire when need to send a keepalive
send-t to fire when we should have gotten something back

• RECV payload => START keepalive-t;
STOP send-t

• RECV keepalive => STOP send-t
• SEND packet => STOP keepalive;

START send
• TIMEOUT keepalive-t => SEND keepalive



20

The Simplified Description --
Exploration Part
• TIMEOUT send-t => Go to exploration;

SEND Event iseeyou=no
• RECV Event iseeyou=no

=> Go to exploration;
SEND Event iseeyou=yes

• RECV Event iseeyou=yes 
=> Go back to normal;

SEND Event iseeyou=yes (if 
necessary)



21

The Simplified Description -- Other

• Message identities can also confirm routability
• Optimistic - the reachability process continues 

even during exploration, including all timers & 
keepalives

• Optimistic - data packets continue to be sent to 
the current addresses until new addresses are 
confirmed (unless interface is down)

• The processes never give up (but state might be 
garbage collected)



22

Issues to Think About

• How to avoid endless yes-yes-yes…
loop, i.e. how to end exploration?

• Keepalive and exploration are same or 
different messages?

• Processes are per context or per host?
• Timing issues vs. transport
• Issues to merge in from Iljitsch’s draft



23

How to Stop Exploration

• Description on the slides makes the process 
continue forever

• One approach would be to say that a 
response is not sent if peer’s iseeyou=yes 
and the peer reports seeing an event where 
our iseeyou=yes

• Another approach would be to use an ack
message or new flag
– But the key question is really when is this used, 

not so much the way it is represented



24

Keepalive and Exploration Integrated?

• Current approach is not
• -02 had an integrated approach
• Separation is likely cleaner
• Message formats are sufficient to express the 

difference, but not sure if this interacts with 
the previous issue

• Recommendation: keep them separate



25

Processes Are per Context or Host?

• Current draft does not really take any position 
on this

• Could explore & verify reachability in such a 
way that it affects all SHIM6 contexts 
between the two hosts

• Or could do this per context
• The latter is simpler, the former is more 

efficient if there are many contexts
• Iljitsch’s draft uses a per host approach



26

Timing Issues vs. Other Layers

• What is the time scale of SHIM6 reactions?
• Interaction with

– Transports, TCP retransmit
– Site and ISP routing and TE mechanisms

• In some cases we know we have problem (e.g. 
green light on interface card goes blank)

• In some other cases we probably should not act
– Faster than TCP’s retransmissions (e.g. not under 5 s)
– Later than TCP or user gives up (e.g. under 30 s)



27

Issues to Merge in/Think about from 
Iljitsch’s Draft
• Separation to outgoing data/other packets
• More detail on the preference values
• Also some other heuristics on selecting the 

most likely addresses
• Initial aggressive rate
• Formats are different


	Reachability & Failure Detection
	Outline
	Status and History
	History of the Protocol
	History of the Protocol, Continued
	Protocol Design & Walkthrough
	Scope of the SHIM6 work
	Design Decisions
	Other Design Goals
	Definitions and Background
	Reachability vs. Exploration
	Protocol case 1 - Idle
	Protocol case 2 - Bidirectional Traffic
	Protocol case 3 - Unidirectional Traffic
	Protocol case 4 - Unidirectional Failure
	Case 4 continued
	Behaviour in the General Case
	The Simplified Description -- Reachability Part
	The Simplified Description -- Exploration Part
	The Simplified Description -- Other
	Issues to Think About
	How to Stop Exploration
	Keepalive and Exploration Integrated?
	Processes Are per Context or Host?
	Timing Issues vs. Other Layers
	Issues to Merge in/Think about from Iljitsch’s Draft

