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Outline

• Status & history
• Protocol walkthrough
• Issues
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Status and History

• Draft 02 is largely in good shape
• Except for the actual protocol 

behaviour…
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History of the Protocol

• Original version in -00 from prior IETFs
– Details largely missing

• Iljitsch’s draft made us understand reachability part 
better
– FBD chosen

• Version -01 for the interim attempted to go provide 
the detailed behaviour
– Had some trouble writing pseudocode or state machine
– Critique from the Interim meeting

• Version -02 based on interim discussions
– Reachability and exploration in the same messages
– Had some trouble describing a state machine
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History of the Protocol, Continued

• Erik’s simplified description
– Avoids the state machine
– Had some trouble writing down all the details
– Protocol has still holes

• IETF-64
– Using Erik’s model as a basis
– Attempting to write down the details (not complete yet)

Note: the protocol that we are so hard trying to describe has one (1) 
message which contains one (1) bit of information relevant for 
behaviour
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Protocol Design & Walkthrough
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Scope of the SHIM6 work
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Design Decisions

• Multi6 does not go to the area of the configuration 
modules or protocols -- we shall not reinvent DHCP, 
and we shall believe what ND tells us

• Own addresses learned locally, peer addresses are 
communicated

• Multi6 only works as a fail-over, Erik’s model:
– Separate hosts don’t share locators to same peer
– A pair of communicating hosts can have multiple contexts 

(for separate ULID pairs) with independent locator choices

• FBD is chosen for simplicity
• Sender chooses outgoing address pair 

(independently from the other direction)
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Other Design Goals

• Efficient
– No packets sent if payload traffic is idle
– No packets sent if bidirectional payload traffic
– Packets sent only if (a) there’s a failure or (b) there’s 

unidirectional traffic

• Handles unidirectional failures
• Construct the protocol so that it provides return 

routability verification at the same time
• Provide a separable component that might be 

possible to use in other contexts
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Definitions and Background

• Available addresses
• Locally operational address pairs
• Operational address pairs
• Unidirectionally operational address pair
• Current path
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Reachability vs. Exploration

• Verifying reachability of the current 
locator pair(s)

• Exploring for an alternative locator pair 
when failure is suspected
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Protocol case 1 - Idle

A B

If you are not sending or receiving payload packets, assume
path is OK
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Protocol case 2 - Bidirectional Traffic

A B

Payload packet

Payload packet

If you send and receive payload packets, assume
path is OK
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Protocol case 3 - Unidirectional 
Traffic

A B

Payload packet

Keepalive (id=10)

If you are receiving payload packets but not sending within t,
assume path is OK but send an event message
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Protocol case 4 - Unidirectional Failure

A B

If you are sending payload packets but not receiving anything,
request peer to explore other return paths. Return path failure:

Payload packet

Event (id=10, seen={}, iseeyou=no)

Payload packet

Payload packet

Payload packet

Payload packet

...

Ret.path
failure

Timer
fires
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Case 4 continued

A B

Event (id=20, seen={10}, iseeyou=yes)

Event (id=21, seen={10}, iseeyou=yes)

Event (id=11, seen={21}, iseeyou=yes)

Payload packet
Payload packet
Payload packet
Payload packet



17

Behaviour in the General Case

• State machine in -02
• The simplified description
• The hard parts are

– Given unidirectional connectivity, we can 
not use request - response

– Stopping exploration when both parties are 
happy

– Anything can happen at any time
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The Simplified Description --
Reachability Part
keepalive-t to fire when need to send a keepalive
send-t to fire when we should have gotten something back

• RECV payload => START keepalive-t;
STOP send-t

• RECV keepalive => STOP send-t
• SEND packet => STOP keepalive;

START send
• TIMEOUT keepalive-t => SEND keepalive



20

The Simplified Description --
Exploration Part
• TIMEOUT send-t => Go to exploration;

SEND Event iseeyou=no
• RECV Event iseeyou=no

=> Go to exploration;
SEND Event iseeyou=yes

• RECV Event iseeyou=yes 
=> Go back to normal;

SEND Event iseeyou=yes (if 
necessary)
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The Simplified Description -- Other

• Message identities can also confirm routability
• Optimistic - the reachability process continues 

even during exploration, including all timers & 
keepalives

• Optimistic - data packets continue to be sent to 
the current addresses until new addresses are 
confirmed (unless interface is down)

• The processes never give up (but state might be 
garbage collected)



22

Issues to Think About

• How to avoid endless yes-yes-yes…
loop, i.e. how to end exploration?

• Keepalive and exploration are same or 
different messages?

• Processes are per context or per host?
• Timing issues vs. transport
• Issues to merge in from Iljitsch’s draft
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How to Stop Exploration

• Description on the slides makes the process 
continue forever

• One approach would be to say that a 
response is not sent if peer’s iseeyou=yes 
and the peer reports seeing an event where 
our iseeyou=yes

• Another approach would be to use an ack
message or new flag
– But the key question is really when is this used, 

not so much the way it is represented
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Keepalive and Exploration Integrated?

• Current approach is not
• -02 had an integrated approach
• Separation is likely cleaner
• Message formats are sufficient to express the 

difference, but not sure if this interacts with 
the previous issue

• Recommendation: keep them separate
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Processes Are per Context or Host?

• Current draft does not really take any position 
on this

• Could explore & verify reachability in such a 
way that it affects all SHIM6 contexts 
between the two hosts

• Or could do this per context
• The latter is simpler, the former is more 

efficient if there are many contexts
• Iljitsch’s draft uses a per host approach
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Timing Issues vs. Other Layers

• What is the time scale of SHIM6 reactions?
• Interaction with

– Transports, TCP retransmit
– Site and ISP routing and TE mechanisms

• In some cases we know we have problem (e.g. 
green light on interface card goes blank)

• In some other cases we probably should not act
– Faster than TCP’s retransmissions (e.g. not under 5 s)
– Later than TCP or user gives up (e.g. under 30 s)
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Issues to Merge in/Think about from 
Iljitsch’s Draft
• Separation to outgoing data/other packets
• More detail on the preference values
• Also some other heuristics on selecting the 

most likely addresses
• Initial aggressive rate
• Formats are different
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