Admission Control over DiffServ using Pre-Congestion Notification

Philip Eardley, Bob Briscoe, Dave Songhurst - BT Research
Francois Le Faucheur, Anna Charny – Cisco
Kwok-Ho Chan, Joe Babiarz - Nortel

IETF-64 tsvwg Nov 8th 2005
Summary

• Aim:
 – End-to-end Controlled Load (CL) service without flow state or signalling in the core / backbone

• Solution:
 – Builds on IntServ over DiffServ
 – new flow admission control mechanism (discover whether DiffServ region support another flow)
 – new flow pre-emption mechanism (if disaster means no longer possible to support all admitted CL flows, discover how many to pre-empt)

• drafts
 1. framework (architecture & use-case)
 • draft-briscoe-tsvwg-cl-architecture-01.txt
 • intention: informational
 2. Router marking behaviour definition
 • Coming soon…
 • intention: standards track
 3. RSVP extensions
 • draft-lefaucheur-rsvp-ecn-00.txt
 • intention: standards track
Summary [2]

• History & changes
 • Previous draft, draft-briscoe-tsvwg-cl-architecture-00.txt, from BT only.
 • BT, Cisco & Nortel have been working together intensively
 • Admission control:
 – New consistent terminology: Pre-Congestion Notification, a new algorithm for ECN-marking CL-packets (as allowed by RFC3168 [ECN])
 – Intent is to fully aligned with RFC3168 (same ECN codepoints)
 • Flow pre-emption mechanism added
 • RSVP extensions done (could also use other signalling protocols, eg NSIS)

• Assumptions:
 • Edge-to-edge Aggregation: many flows over DiffServ region
 • Trust: all nodes in DiffServ region trust each other (but doesn’t have to be any trust relationship with end-hosts)
 • Separation: all nodes in DiffServ region upgraded with Pre-Congestion Notification (ie satisfies draft-floyd-ecn-alternates-03.txt)
end to end controlled load (CL) service using new edge-to-edge adm ctrl mechanism

<table>
<thead>
<tr>
<th>IP routers</th>
<th>Data path processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservation enabled</td>
<td>① Reserved flow processing</td>
</tr>
<tr>
<td>RSVP/ECN gateway</td>
<td>② Policing flow entry to CL</td>
</tr>
<tr>
<td>PHB-for-CL & ECN only</td>
<td>③ Bulk ECN marking</td>
</tr>
<tr>
<td>PHB-for-CL & ECN only</td>
<td>④ Meter ECN per aggregate</td>
</tr>
</tbody>
</table>

New ECN marking algorithm (Pre-Congestion Notification, i.e. not RED)

IntServ over DiffServ
No flow state or processing in DiffServ-region

New RSVP extensions carry info for adm ctrl & pre-emption

RSVP µflow signalling

Ring of enhanced gateways surround DiffServ-region

data aggregate identification only at egress gateway – per previous RSVP hop

Reservation enabled RSVP/ECN gateway PHB-for-CL & ECN only

IP routers

Data path processing

Reserved flow processing

Policing flow entry to CL

Meter ECN per aggregate

Bulk ECN marking
Pre-Congestion Notification
(algorithm for ECN-marking)

- **ECN marking probability of CL packets**
- **Bulk virtual queue**

Diagram:
- CL pkt?
 - Yes -> CL pkt queue
 - No -> Non-CL pkt queue

Mathematical Expression:
- $X = \text{configured adm ctrl capacity for CL traffic}$
- $\theta X \ (\theta < 1)$

Remarks:
- Bulk virtual queue (a conceptual queue, used for measurement):
 - drained somewhat slower than the rate configured for adm ctrl of CL traffic
 - therefore build up of virtual queue is ‘early warning’ that the amount of CL traffic is getting close to the configured capacity
 - NB mean number of pkts in real CL-queue is still very small
edge-to-edge admission control mechanism:

• Solution principles:
 – All routers in the DiffServ region can ECN-mark CL-pkts as ‘early warning’ of congestion, using the new algorithm
 • NB Bulk marking (not per flow)
 – Egress gateway meters ECN marks (moving average) (congestion-level-estimate)
 • NB Aggregate metering, ie per ingress (not per flow)
 – Ingress gateway admits new flow if congestion-level-estimate < threshold
 • congestion-level-estimate piggybacked on RSVP RESV (egress to ingress)
flow pre-emption

• the need for flow pre-emption
 – Coping with node/link failures (including multiple failures) in core networks is essential QoS issue
 – Consequent re-routing can cause severe congestion on some links and hence degrade the QoS
 – Need to support emergency/military calls (MLPP), especially in disaster scenarios
• rate-based pre-emption mechanism
 – Drop sufficient of the previously admitted CL microflows that the remaining ones again receive QoS commensurate with the CL service
 – Thus quickly restores acceptable QoS to lower priority classes
 – Better than just waiting for CL-sessions to end (which would eventually restore QoS)
• Solution is two-step process:
 1. Alert the ingress that pre-emption *may* be needed
 2. Ingress determines the right amount of CL-traffic to drop (if any)
Pre-emption Alert threshold, configured (bulk) traffic rate
• Re-marked-CL triggers egress to measure *sustainable-aggregate-rate* ie how much CL traffic fits across the DiffServ region
After flow pre-emption
summary

• controlled load (CL) service
 – Builds on IntServ over DiffServ
• New mechanisms for DiffServ region
 – Distributed-measurement based Adm Ctrl
 – Rate-based flow Pre-emption
 – Based on bulk pre-congestion marking across the edge-to-edge region
• Standardisation required:
 – New router behaviour for Pre-Congestion Notification (ECN field) and Pre-emption Alert
 – RSVP extension – opaque object to carry congestion-level-estimate & sustainable-aggregate-rate
• We are working to finalise router behaviour draft

benefits…

• Statistical QoS guarantee
 – IntServ over DiffServ end-to-end, and new adm ctrl mechanism over edge-to-edge DiffServ region
 – Preserve QoS to as many flows as possible if heavy congestion, through new pre-emption mechanism
• Support of emergency & military MLPP
 – By flow pre-emption if heavy congestion
• Scales well & resilient
 – No signal processing or path state held on interior routers
• Control load dynamically
 – Avoid potential catastrophic failure problem for big networks with DiffServ architecture & statically provisioned capacity
• Minimal new standardisation
• Incremental deployment
• Deployment path for ECN
 – Operators can gain experience of ECN before end terminals are ECN capable

We would like to get your feedback & further build consensus on the drafts, aiming to move to WG item at next ietf
Extensions (in progress / potential)
(Section 5 of framework draft)

- Inter-operator (DiffServ region spans multiple, non-trusting domains)
 - ECN-based anti-cheating mechanism, same as in draft-briscoe-tsvwg-re-ecn-tcp-00
 - passive inter-domain policing (bulk metering only – nothing per flow)
 - Status: work done, draft soon (BT)

- Adaptive bandwidth for CL service
 - CL & non-CL share BW, based on relative demands, aims for economic efficiency
 - Status: work done, on hold?

- MPLS-TE
 - Extend framework for adm ctrl into a set of MPLS-TE aggregates
 - need MPLS header to include the ECN field, which is not precluded by RFC3270
 - Status: is there community interest in this?

- Non-RSVP signalling
 - Eg NSIS could be used
 - Status: NSIS-community interest / help sought
Relationships to other QOS mechanisms
(Section 6 of framework draft)

- **IntServ Controlled Load**
 - Somewhat better, as get ‘early warning’ before router queue builds. Also more robust to route changes.

- **IntServ over DiffServ**
 - Same architecture
 - We have: RSVP-awareness confined to “border nodes” (gateways); “router marking” (by ingress)

- **Differentiated Services**
 - DiffServ protocol but not (info) DiffServ architecture (that has static provisioning, through traffic conditioning agreements at ingress)

- **ECN**
 - Comply with IP aspects of RFC3168 (ECN), but new feedback mechanism instead of TCP aspects of RFC3168

- **RTECN**
 - Very similar approach, but RTECN is host-to-host rather than edge-to-edge as here

- **RMD**
 - Broadly similar, especially RMD’s measurement-based adm ctrl mode
 - But RMD does hop-by-hop adm ctrl (all interior nodes in DiffServ region are QoS-NSLP aware & process RESERVE msg to compare the requested resources with {capacity minus current load})
 - Includes Severe Congestion handling – our Pre-emption has same aim but different method

- **RSVP Aggregation over MPLS-TE**
 - Possible to extend our framework for adm ctrl of microflows into a set of MPLS-TE aggregates
 - Would require MPLS header to include the ECN field (not precluded by RFC3270)