Internet Engineering Task Force P. Savola Internet-Draft CSC/FUNET Obsoletes: March 3, 2006 3913,2189,2201,1584,1585 (if approved) Intended status: Best Current Practice Expires: September 4, 2006 Overview of the Internet Multicast Routing Architecture draft-ietf-mboned-routingarch-03.txt Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on September 4, 2006. Copyright Notice Copyright (C) The Internet Society (2006). Abstract The lack of up-to-date documentation on IP multicast routing protocols and procedures has caused a great deal of confusion. To clarify the situation, this memo describes the routing protocols and techniques currently (as of this writing) in use. Savola Expires September 4, 2006 [Page 1] Internet-Draft Multicast Routing Overview March 2006 Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Multicast-related Abbreviations . . . . . . . . . . . . . 4 2. Multicast Routing . . . . . . . . . . . . . . . . . . . . . . 4 2.1. Setting up Multicast Forwarding State . . . . . . . . . . 4 2.1.1. PIM-SM . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.2. PIM-DM . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3. Bi-directional PIM . . . . . . . . . . . . . . . . . . 5 2.1.4. DVMRP . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.5. MOSPF . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.6. BGMP . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.7. CBT . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.8. Interactions and Summary . . . . . . . . . . . . . . . 6 2.2. Distributing Topology Information . . . . . . . . . . . . 7 2.2.1. Multi-protocol BGP . . . . . . . . . . . . . . . . . . 7 2.2.2. OSPF/IS-IS Multi-topology Extensions . . . . . . . . . 7 2.2.3. Issue: Overlapping Unicast/multicast Topology . . . . 8 2.3. Learning (Active) Sources . . . . . . . . . . . . . . . . 8 2.3.1. SSM . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2. MSDP . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.3. Embedded-RP . . . . . . . . . . . . . . . . . . . . . 9 2.4. Configuring and Distributing PIM-SM RP Information . . . . 10 2.4.1. Manual Configuration with an Anycast Address . . . . . 10 2.4.2. Embedded-RP . . . . . . . . . . . . . . . . . . . . . 10 2.4.3. BSR and Auto-RP . . . . . . . . . . . . . . . . . . . 11 2.5. Mechanisms for Enhanced Redundancy . . . . . . . . . . . . 11 2.5.1. Anycast RP . . . . . . . . . . . . . . . . . . . . . . 11 2.5.2. Stateless RP Failover . . . . . . . . . . . . . . . . 11 2.5.3. Bi-directional PIM . . . . . . . . . . . . . . . . . . 12 2.6. Interactions with Hosts . . . . . . . . . . . . . . . . . 12 2.6.1. Hosts Sending Multicast . . . . . . . . . . . . . . . 12 2.6.2. Hosts Receiving Multicast . . . . . . . . . . . . . . 12 2.7. Restricting Multicast Flooding in the Link Layer . . . . . 12 2.7.1. Router-to-Router Flooding Reduction . . . . . . . . . 13 2.7.2. Host/Router Flooding Reduction . . . . . . . . . . . . 13 3. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 13 4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14 5. Security Considerations . . . . . . . . . . . . . . . . . . . 14 6. References . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6.1. Normative References . . . . . . . . . . . . . . . . . . . 14 6.2. Informative References . . . . . . . . . . . . . . . . . . 15 Appendix A. Multicast Payload Transport Extensions . . . . . . . 18 A.1. Reliable Multicast . . . . . . . . . . . . . . . . . . . . 18 A.2. Multicast Group Security . . . . . . . . . . . . . . . . . 18 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . . 18 Intellectual Property and Copyright Statements . . . . . . . . . . 20 Savola Expires September 4, 2006 [Page 2] Internet-Draft Multicast Routing Overview March 2006 1. Introduction Good, up-to-date documentation of IP multicast is close to non- existent. This issue is severely felt with multicast routing protocols and techniques. The consequence is that those who wish to learn of IP multicast and how the routing works in the real world do not know where to begin. The aim of this document is to provide a brief overview of multicast routing protocols and techniques. This memo deals with: o setting up multicast forwarding state (Section 2.1), o distributing multicast topology information (Section 2.2), o learning active sources (Section 2.3), o configuring and distributing the PIM-SM RP information (Section 2.4), o mechanisms for enhanced redundancy (Section 2.5), o interacting with hosts (Section 2.6), and o restricting the multicast flooding in the link layer (Section 2.7). Some multicast data transport issues are also introduced in Appendix A. This memo obsoletes and re-classifies to Historic [RFC2026] Border Gateway Multicast Protocol (BGMP), Core Based Trees (CBT), Multicast OSPF (MOSPF) RFCs: [RFC3913], [RFC2189], [RFC2201], [RFC1584], and [RFC1585]. The purpose of the re-classification is to give the readers (both implementors and deployers) an idea what the status of a protocol is; there may or may not be legacy deployments of these protocols, which are not affected by this reclassification. See Section 2.1 for more on each protocol. Savola Expires September 4, 2006 [Page 3] Internet-Draft Multicast Routing Overview March 2006 1.1. Multicast-related Abbreviations ASM Any Source Multicast BGMP Border Gateway Multicast Protocol BSR Bootstrap Router CBT Core Based Trees CGMP Cisco Group Management Protocol DR Designated Router DVMRP Distance Vector Multicast Routing Protocol GARP Group Address Resolution Protocol IGMP Internet Group Management Protocol MBGP Multi-protocol BGP (*not* "Multicast BGP") MLD Multicast Listener Discovery MOSPF Multicast OSPF MSDP Multicast Source Discovery Protocol PGM Pragmatic General Multicast PIM Protocol Independent Multicast PIM-DM PIM - Dense Mode PIM-SM PIM - Sparse Mode PIM-SSM PIM - (Source-specific) Sparse Mode RGMP (Cisco's) Router Group Management Protocol RP Rendezvous Point SSM Source-specific Multicast 2. Multicast Routing 2.1. Setting up Multicast Forwarding State The most important part of multicast routing is setting up the multicast forwarding state. This section describes the protocols commonly used for this purpose. 2.1.1. PIM-SM By far, the most common multicast routing protocol is PIM-SM [I-D.ietf-pim-sm-v2-new]. The PIM-SM protocol includes both Any Source Multicast (ASM) and Source-Specific Multicast (SSM) functionality; PIM-SSM is a subset of PIM-SM. Most current routing platforms support PIM-SM. 2.1.2. PIM-DM Whereas PIM-SM is designed to avoid unnecessary flooding of multicast data, PIM-DM [RFC3973] operates in a "dense" mode, flooding the multicast transmissions throughout the network ("flood and prune") unless the leaf parts of the network periodically indicate that they are not interested in that particular traffic. Savola Expires September 4, 2006 [Page 4] Internet-Draft Multicast Routing Overview March 2006 PIM-DM may be some fit in small and/or simple networks, where setting up an RP would be unnecessary, and possibly in cases where a large number of users is expected to be able to wish to receive the transmission so that the amount of state the network has to keep is minimal. Therefore PIM-DM has typically only been used in special deployments, never currently in, e.g., ISPs' networks. PIM-DM never really got popular due to its reliance of data plane and potential for loops, and the over-reliance of the complex Assert mechanism. Further, it was a non-starter with high-bandwidth streams. Many implementations also support so-called "sparse-dense" mode, where Sparse mode is used by default, but Dense is used for configured multicast group ranges (such as Auto-RP in Section 2.4.3) only. Lately, many networks have been transitioned away from sparse- dense to only sparse mode. 2.1.3. Bi-directional PIM Bi-directional PIM [I-D.ietf-pim-bidir] aims to offer streamlined PIM-SM operation, without data-driven events and data-encapsulation, inside a PIM-SM domain. The usage of bi-dir PIM may be on the increase especially inside sites leveraging multicast. As of this writing, in IPv6 or inter-domain multicast there is no standards based mechanism for alerting routers that a group range is to be used for bi-directional PIM. 2.1.4. DVMRP Distance Vector Multicast Routing Protocol (DVMRP) [RFC1075] [I-D.ietf-idmr-dvmrp-v3] [I-D.ietf-idmr-dvmrp-v3-as] was the first protocol designed for multicasting, and to get around initial deployment hurdles, it also included tunneling capabilities which were part of its multicast topology functions. Currently, DVMRP is used only very rarely in operator networks, having been replaced with PIM-SM. The most typical deployment of DVMRP is at a leaf network, to run from a legacy firewall only supporting DVMRP to the internal network. However, GRE tunneling [RFC2784] seems to have overtaken DVMRP in this functionality, and there is relatively little use for DVMRP except in legacy deployments. Savola Expires September 4, 2006 [Page 5] Internet-Draft Multicast Routing Overview March 2006 2.1.5. MOSPF MOSPF [RFC1584] was implemented by several vendors and has seen some deployment in intra-domain networks. However, since it does not scale to the inter-domain case, operators have found it is easier to deploy a single protocol for use in both intra-domain and inter- domain networks and so it is no longer being actively deployed. 2.1.6. BGMP BGMP [RFC3913] did not get sufficient support within the service provider community to get adopted and moved forward in the IETF standards process. There were no reported production implementations and no production deployments. 2.1.7. CBT CBT [RFC2201] was an academic project that provided the basis for PIM sparse mode shared trees. Once the shared tree functionality was incorporated into PIM implementations, there was no longer a need for a production CBT implemention. Therefore, CBT never saw production deployment. 2.1.8. Interactions and Summary It is worth noting that is it is possible to run different protocols with different groups ranges (e.g., treat some groups as dense mode in an other-wise PIM-SM network; this typically requires manual configuration of the groups) or interact between different protocols (e.g., use DVMRP in the leaf network, but PIM-SM upstream). The basics for interactions among different protocols have been outlined in [RFC2715]. The following figure gives a concise summary of the deployment status of different protocols as of this writing. +-------------+-------------+----------------+ | Interdomain | Intradomain | Status | +------------+-------------+-------------+----------------+ | PIM-SM | Yes | Yes | Active | | PIM-DM | Not feasible| Yes | Little use | | Bi-dir PIM | No | Yes | Wait & see | | DVMRP | Not anymore | Stub only | Going out | | MOSF | No | Not anymore | Inactive | | CBT | No | No | Never deployed | | BGMP | No | No | Never deployed | +------------+-------------+-------------+----------------+ Savola Expires September 4, 2006 [Page 6] Internet-Draft Multicast Routing Overview March 2006 From this table, it is clear that PIM-Sparse Mode is the only multicast routing protocol that is deployed inter-domain and, therefore, is most frequently used within multicast domains as well. 2.2. Distributing Topology Information When unicast and multicast topologies are the same ("congruent"), i.e., use the same routing tables (routing information base, RIB), it has been considered sufficient just to distribute one set of reachability information. However, when PIM -- which by default built multicast topology based on the unicast topology -- gained popularity, it became apparent that it would be necessary to be able to distribute also non-congruent multicast reachability information in the regular unicast protocols. This was previously not an issue, because DVMRP built its own reachability information. The topology information is needed to perform efficient distribution of multicast transmissions and to prevent transmission loops by applying it to the Reverse Path Forwarding (RPF) check. This subsection introduces these protocols. 2.2.1. Multi-protocol BGP Multiprotocol Extensions for BGP-4 [RFC2858] (often referred to as "MBGP"; however, it is worth noting that "MBGP" does *not* stand for "Multicast BGP") specifies a mechanism by which BGP can be used to distribute different reachability information for unicast and multicast traffic (using SAFI=2 for multicast). Multiprotocol BGP has been widely deployed for years, and is also needed to route IPv6. Note that SAFI=3 was originally specified for "both unicast and multicast" but has been deprecated [I-D.ietf-idr-rfc2858bis]. These extensions are in widespread use wherever BGP is used to distribute unicast topology information. Those having multicast infrastructure and using BGP should use Multiprotocol BGP to distribute multicast reachability information explicitly even if the topologies are congruent. A number of significant multicast transit providers even require this, by doing the RPF lookups solely based on explicitly advertised multicast address family. 2.2.2. OSPF/IS-IS Multi-topology Extensions Similar to BGP, some IGPs also provide the capability for signalling a differing multicast topology, for example IS-IS multi-topology extensions [I-D.ietf-isis-wg-multi-topology]. Similar work exists Savola Expires September 4, 2006 [Page 7] Internet-Draft Multicast Routing Overview March 2006 for OSPF [I-D.ietf-ospf-mt]. It is worth noting that interdomain incongruence and intradomain incongruence are orthogonal, so one doesn't require the other. Specifically, interdomain incongruence is quite common, while intradomain incongruence isn't, so you see much more deployments of MBGP than MT-ISIS/OSPF. Commonly deployed networks have managed well without protocols handling intradomain incongruence. However, the availability of multi-topology mechanisms may in part replace the typically used workarounds such as tunnels. 2.2.3. Issue: Overlapping Unicast/multicast Topology An interesting case occurs when some routers do not distribute multicast topology information explicitly while others do. In particular, this happens when some multicast sites in the Internet are using plain BGP while some use MBGP. Different implementations deal with this using different means. Sometimes, multicast RPF mechanisms first look up the multicast routing table, or RIB ("topology database") with a longest prefix match algorithm, and if they find any entry (including a default route), that is used; if no match is found, the unicast routing table is used instead. An alternative approach is to use longest prefix match on the union of multicast and unicast routing tables; an implementation technique here is to copy the whole unicast routing table over to the multicast routing table. The important point to remember here, though, is to not override the multicast-only routes; if the longest prefix match would find both a (copied) unicast route and a multicast-only route, the latter should be treated as preferable. One implemented approach is to just look up the information in the unicast routing table, and provide the user capabilities to change that as appropriate, using for example copying functions discussed above. 2.3. Learning (Active) Sources Typically, multicast routing protocols must either assume that the receivers know the IP addresses of the (active) sources for a group a priori, possibly using an out-of-band mechanism (SSM), or the sources must be discovered by the network protocols automatically (ASM). Learning active sources is a relatively straightforward process with a single PIM-SM domain and with a single RP, but having a single PIM-SM domain for the whole Internet is a completely unscalable model Savola Expires September 4, 2006 [Page 8] Internet-Draft Multicast Routing Overview March 2006 for many reasons. Therefore it is required to be able to split up the multicast routing infrastructures to smaller domains, and there must be a way to share information about active sources using some mechanism if the ASM model is to be supported. This section discusses the options. 2.3.1. SSM Source-specific Multicast [I-D.ietf-ssm-arch] (sometimes also referred to as "single-source Multicast") does not count on learning active sources in the network; it is assumed that the recipients know these using out of band mechanisms, and when subscribing to an (S,G) channel indicate toward which source(s) the multicast routing protocol should send the Join messages. As of this writing, there are attempts to analyze and/or define out- of-band source discovery functions which would help SSM in particular [I-D.lehtonen-mboned-dynssm-req]. 2.3.2. MSDP Multicast Source Discovery Protocol [RFC3618] was invented as a stop- gap mechanism, when it became apparent that multiple PIM-SM domains (and RPs) were needed in the network, and information about the active sources needed to be propagated between the PIM-SM domains using some other protocol. MSDP is also used to share the state about sources between multiple RPs in a single domain for, e.g., redundancy purposes [RFC3446]. There is also work in progress to achieve the same using PIM extensions [I-D.ietf-pim-anycast-rp]. See Section 2.5 for more. There is no intent to define MSDP for IPv6, but instead use only SSM and Embedded-RP instead [I-D.ietf-mboned-ipv6-multicast-issues]. 2.3.3. Embedded-RP Embedded-RP [RFC3956] is an IPv6-only technique to map the address of the RP to the multicast group address. Using this method, it is possible to avoid the use of MSDP while still allowing multiple multicast domains (in the traditional sense). The model works by defining a single RP for a particular group for all of the Internet, so there is no need to share state about that with any other RPs (except, possibly, for redundancy purposes with Anycast-RP using PIM). Savola Expires September 4, 2006 [Page 9] Internet-Draft Multicast Routing Overview March 2006 2.4. Configuring and Distributing PIM-SM RP Information For PIM-SM, configuration mechanisms exist which are used to configure the RP addresses and which groups are to use those RPs in the routers. This section outlines the approaches. 2.4.1. Manual Configuration with an Anycast Address It is often easiest just to manually configure the RP information on the routers when PIM-SM is used. Originally, static RP mapping was considered suboptimal since it required explicit configuration changes every time the RP address changed. However, with the advent of anycast RP addressing, the RP address is unlikely to ever change. Therefore, the administrative burden is generally limited to initial configuration. Since there is usually a fair amount of multicast configuration required on all routers anyway (eg, PIM on all interfaces), adding the RP address statically isn't really an issue. Further, static anycast RP mapping provides the benefits of RP load balancing and redundancy (see Section 2.5) without the complexity found in dynamic mechanisms like Auto-RP and Bootstrap Router (BSR). With such design, an anycast RP uses a "portable" address, which is configured on a loopback interfaces of the routers currently acting as RPs, as described in [RFC3446]. Using this technique, each router might only need to be configured with one, portable RP address. 2.4.2. Embedded-RP Embedded-RP provides the information about the RP's address in the group addresses which are delegated to those who use the RP, so unless no other ASM than Embedded-RP is used, one only needs to configure the RP routers themselves. While Embedded-RP in many cases is sufficient for IPv6, other methods of RP configuration are needed if one needs to provide ASM service for other than Embedded-RP group addresses. In particular, service discovery type of applications may need hard-coded addresses that are not dependent on local RP addresses. As the RP's address is exposed to the users and applications, it is very important to ensure it does not change often, e.g., by using manual configuration of an anycast address. Savola Expires September 4, 2006 [Page 10] Internet-Draft Multicast Routing Overview March 2006 2.4.3. BSR and Auto-RP BSR [I-D.ietf-pim-sm-bsr] is a mechanism for configuring the RP address for groups. It may no longer be in as wide use with IPv4 as it was ealier, and for IPv6, Embedded-RP will in many cases be sufficient. Cisco's Auto-RP is an older, proprietary method for distributing group to RP mappings, similar to BSR. Auto-RP has little use today. Both Auto-RP and BSR require some form of control at the routers to ensure that only valid routers are able to advertise themselves as RPs. Further, flooding of BSR and Auto-RP messages must be prevented at PIM borders. Additionally, routers require monitoring that they are actually using the RP(s) the administrators think they should be using, for example if a router (maybe in customer's control) is advertising itself inappropriately. All in all, while BSR and Auto-RP provide easy configuration, they also provide very significant configuration and management complexity. It is worth noting that both Auto-RP and BSR were deployed before the use of a manually configured anycast-RP address became relatively commonplace, and there is actually relatively little use for them today. 2.5. Mechanisms for Enhanced Redundancy A couple of mechanisms, already described in this document, have been used as a means to enhance redundancy, resilience against failures, and to recover from failures quickly. This section summarizes these techniques explicitly. 2.5.1. Anycast RP As mentioned in Section 2.3.2, MSDP is also used to share the state about sources between multiple RPs in a single domain for, e.g., redundancy purposes [RFC3446]. The purpose of MSDP in this context is to share the same state information on multiple RPs for the same groups to enhance the robustness of the service. There is also work in progress to achieve the same using PIM extensions [I-D.ietf-pim-anycast-rp]. This is a required method to be able to use Anycast RP with IPv6. 2.5.2. Stateless RP Failover It is also possible to use some mechanisms for smaller amount of redundancy as Anycast RP, without sharing state between the RPs. A Savola Expires September 4, 2006 [Page 11] Internet-Draft Multicast Routing Overview March 2006 traditional mechanism has been to use Auto-RP or BSR (see Section 2.4.3) to select another RP when the active one failed. However, the same functionality could be achieved using a shared- unicast RP address ("anycast RP without state sharing") without the complexity of a dynamic mechanism. Further, Anycast RP offers a significantly more extensive failure mitigation strategy, so today there is actually very little need to use stateless failover mechanisms, especially dynamic ones, for redundancy purposes. 2.5.3. Bi-directional PIM Bi-directional PIM (see Section 2.1.3) uses less state than PIM-SM, implying a better total convergence. On the other hand, PIM-SM or SSM may be faster especially in scenarios where bi-directional needs to re-do the Designated Forwarder election. 2.6. Interactions with Hosts Previous sections have dealt with the components required by routers to be able to do multicast routing. Obviously, the real users of multicast are the hosts: either sending or receiving multicast. This section describes the required interactions with hosts. 2.6.1. Hosts Sending Multicast Hosts don't need to do any signalling prior to sending multicast to a group; they just send the packets to the link-layer multicast address, and the designated router will receive all the multicast packets and start forwarding them as appropriate. 2.6.2. Hosts Receiving Multicast Hosts signal their interest in receiving a multicast group or channel by the use of IGMP [RFC3376] and MLD [RFC3810]. IGMPv2 and MLDv1 are also commonplace, but most new deployments support the latest specifications. 2.7. Restricting Multicast Flooding in the Link Layer Multicast transmission in the link layer, for example Ethernet, typically includes some form of flooding the packets through a LAN. This causes unnecessary bandwidth usage and discarding unwanted frames on those nodes which did not want to receive the multicast transmission. Therefore a number of techniques have been developed, to be used in Ethernet switches between routers, or between routers and hosts, to limit the flooding. Savola Expires September 4, 2006 [Page 12] Internet-Draft Multicast Routing Overview March 2006 These options are discussed in this section. 2.7.1. Router-to-Router Flooding Reduction A proprietary solution, Cisco's RGMP [RFC3488] has been developed to reduce the amount of router-to-router flooding on a LAN. This is typically only considered a problem in some Ethernet-based Internet Exchange points. There have been proposals to snoop PIM messages [I-D.tsenevir-pim-sm-snoop][I-D.serbest-l2vpn-vpls-mcast] to achieve the same effect. 2.7.2. Host/Router Flooding Reduction There are a number of techniques to help reduce flooding both from a router to hosts, and from a host to the routers (and other hosts). Cisco's proprietary CGMP [CGMP] provides a solution where the routers notify the switches, but also allows the switches to snoop IGMP packets to enable faster notification of hosts no longer wishing to receive a group. IPv6 is not supported. IEEE specifications mention Group Address Resolution Protocol (GARP) [GARP] as a link-layer method to perform the same functionality. The implementation status is unknown. IGMP snooping [I-D.ietf-magma-snoop] appears to be the most widely implemented technique. IGMP snooping requires that the switches implement a significant amount of IP-level packet inspection; this appears to be something that is difficult to get right, and often the upgrades are also a challenge. To allow the snooping switches to identify at which ports the routers reside (and therefore where to flood the packets) instead of requiring manual configuration, Multicast Router Discovery protocol is being specified [RFC4286]. IGMP proxying [I-D.ietf-magma-igmp-proxy] is sometimes used either as a replacement of a multicast routing protocol on a small router, or to aggregate IGMP/MLD reports when used with IGMP snooping. 3. Acknowledgements Tutoring a couple multicast-related papers, the latest by Kaarle Ritvanen [RITVANEN] convinced the author that the up-to-date multicast routing and address assignment/allocation documentation is necessary. Leonard Giuliano, James Lingard, Jean-Jacques Pansiot, Dave Meyer, Savola Expires September 4, 2006 [Page 13] Internet-Draft Multicast Routing Overview March 2006 Stig Venaas, Tom Pusateri, Marshall Eubanks, Dino Farinacci, and Bharat Joshi provided good comments, helping in improving this document. 4. IANA Considerations This memo includes no request to IANA. 5. Security Considerations This memo only describes different approaches to multicast routing, and this has no security considerations; the security analysis of the mentioned protocols is out of scope of this memo. However, there has been analysis of the security of multicast routing infrastructures [I-D.ietf-mboned-mroutesec], IGMP/MLD [I-D.daley-magma-smld-prob], and PIM last-hop issues [I-D.savola-pim-lasthop-threats]. 6. References 6.1. Normative References [I-D.ietf-idmr-dvmrp-v3] Pusateri, T., "Distance Vector Multicast Routing Protocol", draft-ietf-idmr-dvmrp-v3-11 (work in progress), December 2003. [I-D.ietf-idmr-dvmrp-v3-as] Pusateri, T., "Distance Vector Multicast Routing Protocol Applicability Statement", draft-ietf-idmr-dvmrp-v3-as-01 (work in progress), May 2004. [I-D.ietf-isis-wg-multi-topology] Przygienda, T., "M-ISIS: Multi Topology (MT) Routing in IS-IS", draft-ietf-isis-wg-multi-topology-11 (work in progress), October 2005. [I-D.ietf-ospf-mt] Psenak, P., "Multi-Topology (MT) Routing in OSPF", draft-ietf-ospf-mt-06 (work in progress), February 2006. [I-D.ietf-pim-bidir] Handley, M., "Bi-directional Protocol Independent Multicast (BIDIR-PIM)", draft-ietf-pim-bidir-08 (work in Savola Expires September 4, 2006 [Page 14] Internet-Draft Multicast Routing Overview March 2006 progress), October 2005. [I-D.ietf-pim-sm-v2-new] Fenner, B., Handley, M., Holbrook, H., and I. Kouvelas, "Protocol Independent Multicast - Sparse Mode PIM-SM): Protocol Specification (Revised)", draft-ietf-pim-sm-v2-new-11 (work in progress), October 2004. [I-D.ietf-ssm-arch] Holbrook, H. and B. Cain, "Source-Specific Multicast for IP", draft-ietf-ssm-arch-07 (work in progress), October 2005. [RFC2026] Bradner, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, October 1996. [RFC2858] Bates, T., Rekhter, Y., Chandra, R., and D. Katz, "Multiprotocol Extensions for BGP-4", RFC 2858, June 2000. [RFC3376] Cain, B., Deering, S., Kouvelas, I., Fenner, B., and A. Thyagarajan, "Internet Group Management Protocol, Version 3", RFC 3376, October 2002. [RFC3618] Fenner, B. and D. Meyer, "Multicast Source Discovery Protocol (MSDP)", RFC 3618, October 2003. [RFC3810] Vida, R. and L. Costa, "Multicast Listener Discovery Version 2 (MLDv2) for IPv6", RFC 3810, June 2004. [RFC3956] Savola, P. and B. Haberman, "Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address", RFC 3956, November 2004. [RFC3973] Adams, A., Nicholas, J., and W. Siadak, "Protocol Independent Multicast - Dense Mode (PIM-DM): Protocol Specification (Revised)", RFC 3973, January 2005. 6.2. Informative References [CGMP] "Cisco Group Management Protocol", . [GARP] Tobagi, F., Molinero-Fernandez, P., and M. Karam, "Study of IEEE 802.1p GARP/GMRP Timer Values", 1997. [I-D.daley-magma-smld-prob] Daley, G. and G. Kurup, "Trust Models and Security in Savola Expires September 4, 2006 [Page 15] Internet-Draft Multicast Routing Overview March 2006 Multicast Listener Discovery", draft-daley-magma-smld-prob-00 (work in progress), July 2004. [I-D.ietf-idr-rfc2858bis] Bates, T., "Multiprotocol Extensions for BGP-4", draft-ietf-idr-rfc2858bis-08 (work in progress), January 2006. [I-D.ietf-magma-igmp-proxy] Fenner, B., He, H., Haberman, B., and H. Sandick, "IGMP/ MLD-based Multicast Forwarding ('IGMP/MLD Proxying')", draft-ietf-magma-igmp-proxy-06 (work in progress), April 2004. [I-D.ietf-magma-snoop] Christensen, M., Kimball, K., and F. Solensky, "Considerations for IGMP and MLD Snooping Switches", draft-ietf-magma-snoop-12 (work in progress), February 2005. [I-D.ietf-mboned-ipv6-multicast-issues] Savola, P., "IPv6 Multicast Deployment Issues", draft-ietf-mboned-ipv6-multicast-issues-02 (work in progress), February 2005. [I-D.ietf-mboned-mroutesec] Savola, P., Lehtonen, R., and D. Meyer, "PIM-SM Multicast Routing Security Issues and Enhancements", draft-ietf-mboned-mroutesec-04 (work in progress), October 2004. [I-D.ietf-pim-anycast-rp] Farinacci, D. and Y. Cai, "Anycast-RP using PIM", draft-ietf-pim-anycast-rp-07 (work in progress), February 2006. [I-D.ietf-pim-sm-bsr] Bhaskar, N., "Bootstrap Router (BSR) Mechanism for PIM", draft-ietf-pim-sm-bsr-06 (work in progress), October 2005. [I-D.lehtonen-mboned-dynssm-req] Lehtonen, R., "Requirements for discovery of dynamic SSM sources", draft-lehtonen-mboned-dynssm-req-00 (work in progress), February 2005. [I-D.savola-pim-lasthop-threats] Savola, P., "Last-hop Threats to Protocol Independent Savola Expires September 4, 2006 [Page 16] Internet-Draft Multicast Routing Overview March 2006 Multicast (PIM)", draft-savola-pim-lasthop-threats-01 (work in progress), January 2005. [I-D.serbest-l2vpn-vpls-mcast] Serbest, Y., "Supporting IP Multicast over VPLS", draft-serbest-l2vpn-vpls-mcast-03 (work in progress), July 2005. [I-D.tsenevir-pim-sm-snoop] Senevirathne, T. and S. Vallepali, "Protocol Independent Multicast-Sparse Mode (PIM-SM) Snooping", draft-tsenevir-pim-sm-snoop-00 (work in progress), April 2002. [RFC1075] Waitzman, D., Partridge, C., and S. Deering, "Distance Vector Multicast Routing Protocol", RFC 1075, November 1988. [RFC1584] Moy, J., "Multicast Extensions to OSPF", RFC 1584, March 1994. [RFC1585] Moy, J., "MOSPF: Analysis and Experience", RFC 1585, March 1994. [RFC2189] Ballardie, T., "Core Based Trees (CBT version 2) Multicast Routing -- Protocol Specification --", RFC 2189, September 1997. [RFC2201] Ballardie, T., "Core Based Trees (CBT) Multicast Routing Architecture", RFC 2201, September 1997. [RFC2715] Thaler, D., "Interoperability Rules for Multicast Routing Protocols", RFC 2715, October 1999. [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, March 2000. [RFC3208] Speakman, T., Crowcroft, J., Gemmell, J., Farinacci, D., Lin, S., Leshchiner, D., Luby, M., Montgomery, T., Rizzo, L., Tweedly, A., Bhaskar, N., Edmonstone, R., Sumanasekera, R., and L. Vicisano, "PGM Reliable Transport Protocol Specification", RFC 3208, December 2001. [RFC3446] Kim, D., Meyer, D., Kilmer, H., and D. Farinacci, "Anycast Rendevous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)", RFC 3446, January 2003. Savola Expires September 4, 2006 [Page 17] Internet-Draft Multicast Routing Overview March 2006 [RFC3488] Wu, I. and T. Eckert, "Cisco Systems Router-port Group Management Protocol (RGMP)", RFC 3488, February 2003. [RFC3740] Hardjono, T. and B. Weis, "The Multicast Group Security Architecture", RFC 3740, March 2004. [RFC3913] Thaler, D., "Border Gateway Multicast Protocol (BGMP): Protocol Specification", RFC 3913, September 2004. [RFC4286] Haberman, B. and J. Martin, "Multicast Router Discovery", RFC 4286, December 2005. [RITVANEN] Ritvanen, K., "Multicast Routing and Addressing", HUT Report, Seminar on Internetworking, May 2004, . Appendix A. Multicast Payload Transport Extensions A couple of mechanisms have been, and are being specified, to improve the characteristics of the data that can be transported over multicast. These go beyond the scope of multicast routing, but as reliable multicast has some relevance, these are briefly mentioned. A.1. Reliable Multicast Reliable Multicast Working Group has been working on experimental specifications so that applications requiring reliable delivery characteristics, instead of simple unreliable UDP, could use multicast as a distribution mechanism. One such mechanism is Pragmatic Generic Multicast (PGM) [RFC3208]. This does not require support from the routers, bur PGM-aware routers may act as helpers delivering missing data. A.2. Multicast Group Security Multicast Security Working Group has been working on methods how the integrity, confidentiality, and authentication of data sent to multicast groups can be ensured using cryptographic techniques [RFC3740]. Savola Expires September 4, 2006 [Page 18] Internet-Draft Multicast Routing Overview March 2006 Author's Address Pekka Savola CSC - Scientific Computing Ltd. Espoo Finland Email: psavola@funet.fi Savola Expires September 4, 2006 [Page 19] Internet-Draft Multicast Routing Overview March 2006 Full Copyright Statement Copyright (C) The Internet Society (2006). This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights. This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Intellectual Property The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79. Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org. Acknowledgment Funding for the RFC Editor function is provided by the IETF Administrative Support Activity (IASA). Savola Expires September 4, 2006 [Page 20]