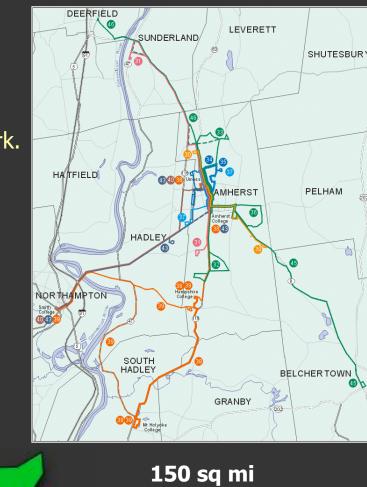
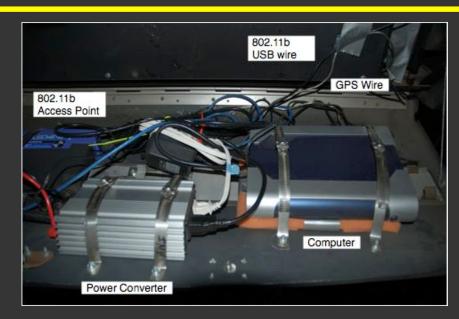
UMass DieselNet and related projects

Brian Neil Levine

with Banerjee, Brennan, Burgess, Burns, Chen, Kostadinov, Sorber, and Zhao, Ammar, Corner, Zegura



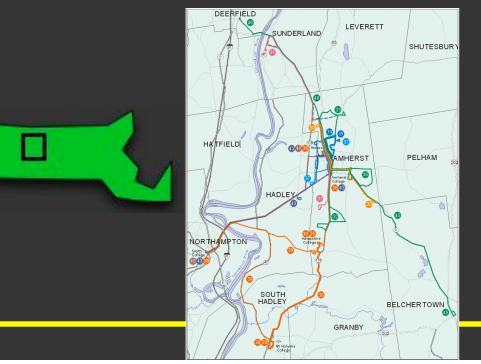
Overview

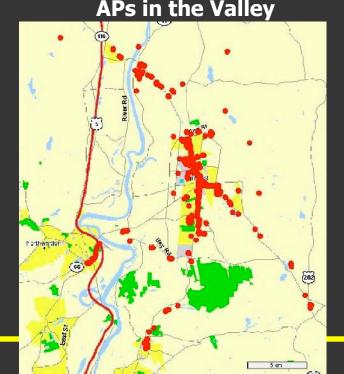

- DieselNet operational testbed
- Traces of DieselNet for research
 - Characteristics
 - Two examples (MaxProp and MORA)
- Expanding the Network:
 - Throwboxes
 - Diversifying the network
 - Sensor net DTNs

UMass DieselNet

- Operational since May 2004 with 5 buses. Now 40 buses.
 - Bus routes span 150 sq. miles.
 - Town center (4sq miles) is hub of network.
- Each bus:
 - Linux computer
 - 256M
 - USB 802.11b adapter
 - 802.11b AP
 - GPS receiver
 - 40GB hard drive.

UMass DieselNet





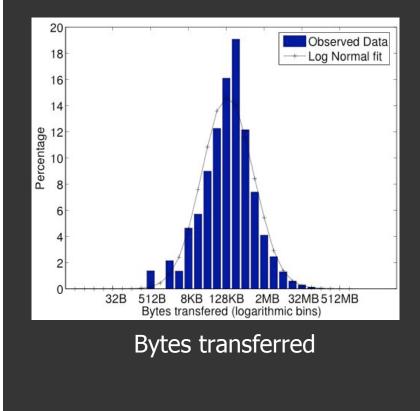
Mobility and Transfer traces

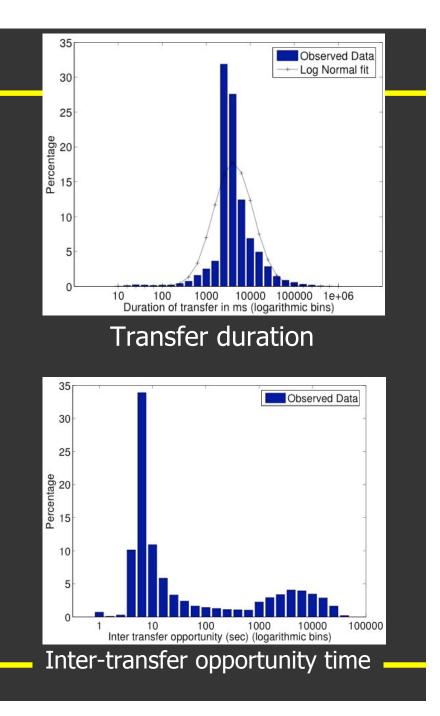
- The buses contact a central server when ever they are in range of an open 802.11 AP (set up by others).
- They upload information about bus-to-bus transfers, GPS logs, and download software updates.
- Traces of 60 days of DieselNet operation are on the web
 - http://prisms.cs.umass.edu/diesel

APs in the Valley

Transfer Opportunities

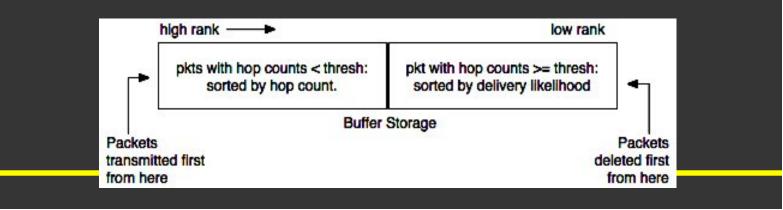
 Red dots show actual bus-to-bus transfers during a one-month period.


- Map shows zoom of Amherst downtown and UMass campus
- For each transfer we record the duration, transferred data, location (and now speed and direction of each bus).

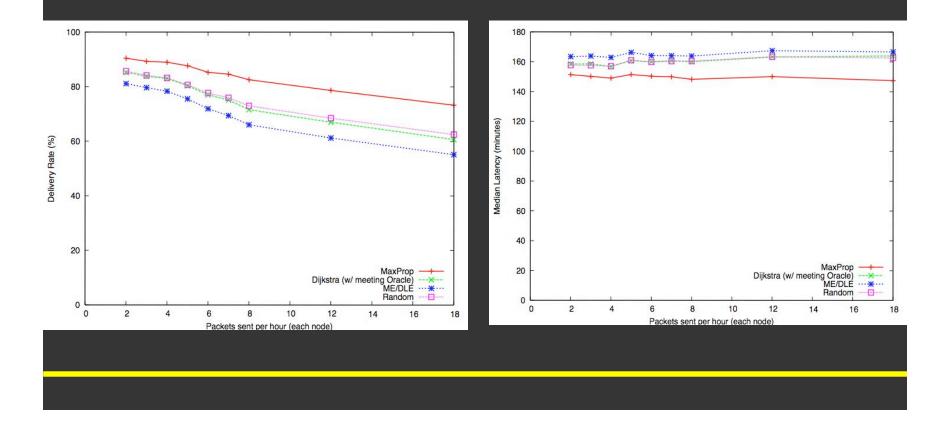

 Currently we send random data to fill available time; John's code supports applications (see Friday's talk)

Measurements

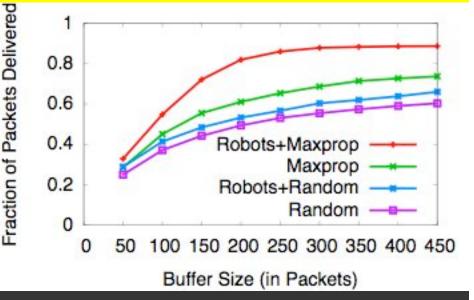
• Buses log their status via available access points (and update software).

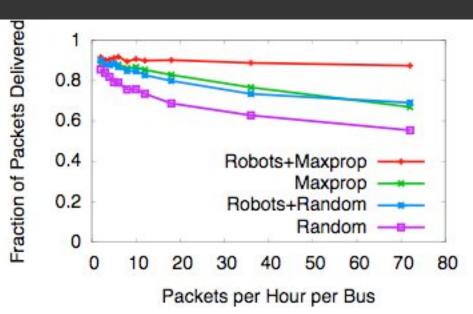


Ex. 1: MaxProp Routing Protocol


MaxProp uses several mechanisms to route packets in a DTN:

- At each TransOpp, packets are scheduled in an order based on:
 - Likelihood of delivery to destination
 - Packets with low hop-counts are prioritized.
- When storage is low, packets are deleted in reverse order.
- MaxProp reports delivery of packets globally, to clear buffers.
- Hoplists reduce repeated propagation
- Results show all mechanisms contribute to effective routing.


DieselNet Traces


- DieselNet traces allow us to compare our protocol's performance to existing work.
 - 18 packets per hr, 10k packets, unlimited buffer
- Performs better than delivery likelihood alone, random, and Dijkstra's with meeting oracle (which can't avoid congestion)

Ex. 2: Multi-Objective Robotic Assistance

- Robots (e.g., blimps) move within a DTN improve performance.
- MORA determines robots' movements to maximize several objectives by visiting peers with:
 - Most previously unseen messages
 - Most messages that haven't been replicated
 - Visit peer with highest avg delivery latency
 - Visit peer least visited
- Graphs show improvement of adding robots to MaxProp and Random.

Expanding DieselNet

Expanding DieselNet

- Throwboxes
 - Small, stationary, Solar/battery powered
- Diversifying the network
 - Addition of 1 square mile Mesh in Amherst
 - Addition of non-scheduled vehicles
 - Town safety vehicles
- DTN Sensor net on Wood Turtles

In development: Throwbox

- Power Management: Intelligently switches boards/radios to complete tasks.
 - Buses hail the Throwboxes --- we never to miss a transfer opportunity and we don't deplete our battery.
- [See Mostafa's talk in this session]
- Multi-platform HPM device:
 - TelosB mote (sensor)
 - 900 MHz Maxstream Xtend (hailing radio)
 - 8 Mhz microcontroller
 - Stargate
 - 802.11b CF card
 - 400Mhz PXA255 Xscale
 - 64 MB RAM
- Java 1.3 (currently runs all DieselNet code)
- AA rechargeable batteries / Solar power

Diversifying DieselNet

- 1-square mile of a college town.
 - 9 Cisco 1500 access points form mesh (linked to cisco routers, etc)
 - Existing 40 buses
 - 5 DieselNet nodes with Cisco 3200 routers in Town vehicles
 - 5 stationary Throwboxes placed in Town

Heterogeneous network allows levels of disruption:

- *Mini*: temporary disconnection from mesh (due to mobility)
- *Medium:* partitions in mesh (due to failure)
- Large: entire mesh fails (e.g., blackout)
- *Extended:* when mesh is out of range

- Diverse network of
 - Mobility (scheduled/unscheduled),
 - Nodes (mobile/stationary),
 - Power (grid/diesel/solar),
 - Radio range (802.11/Maxstream)
 - Storage (40G down to 512M)

Goals:

- traces of workload, mobility, transfers, failure
- test placement of throwboxes
- develop applications

DTN sensor net

- Monitoring the habitat of wood turtles.
- Primary goal is to collect GPS information, temperature, sunlight intensity, and turtle "dating".
- Turtles equipped with 6 MHz Mica-2 dot (4k RAM), short-range radio (CC1000: ~30m, ~30kbps), battery, solar cell, custom charging/measurement board.
- Weighs less than 50 grams (< 70g required!)
- Developing a highly constrained and energy efficient DTN system for mobile sensor networks.
 - To Propagate GPS and other readings back to a base station using DTN.
- Automatically adapts to current and future solar conditions.

Lots of Students

- DieselNet:
 - John Burgess
- Protocols:
 - MaxProp: [John Burgess, et al, INFOCOM 2006]
 - MORA: [Brendan Burns et al, INFOCOM 2005]
- Throwboxes:
 - Nilanjan Banerjee, Yang Chen, Jacob Sorber, Wenrui Zhao, Matt Brennan
- Turtles:
 - Nilanjan Banerjee, Jacob Sorber, Matt Brennan, Alex Kostadinov
- Alert Team:
 - Mostafa Ammar, Mark Corner, Brian Levine, Ellen Zegura

Summary

Challenges

- constrained transfer opps (DieselNet);
- Add constrained power (Throwboxes);
- Add constrained size and resources (Terrapin Net)
- Goals:
 - Real mobility and transfer traces (with real quirks)
 - Vital for trace-based research and real experiments (e.g., placement throwboxes)
 - Integration of DTNs into Mesh networks
 - Working on getting real workloads
- DieselNet traces available on our web site
 - http://prisms.cs.umass.edu/diesel