Is the solution based upon any existing technology (reuse)?

<table>
<thead>
<tr>
<th></th>
<th>ATS6</th>
<th>TSP</th>
<th>Point6</th>
<th>L2TPv2</th>
<th>L2TPv3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98</td>
<td>90</td>
<td>100</td>
<td>100</td>
<td>98</td>
</tr>
</tbody>
</table>

Is the solution documented (published)?

<table>
<thead>
<tr>
<th></th>
<th>ATS6</th>
<th>TSP</th>
<th>Point6</th>
<th>L2TPv2</th>
<th>L2TPv3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100</td>
<td>90</td>
<td>90</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Are there any known issues in the solution (completeness)?

<table>
<thead>
<tr>
<th></th>
<th>ATS6</th>
<th>TSP</th>
<th>Point6</th>
<th>L2TPv2</th>
<th>L2TPv3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98</td>
<td>95</td>
<td>100</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Has the solution been fully implemented (status idea)?

<table>
<thead>
<tr>
<th></th>
<th>ATS6</th>
<th>TSP</th>
<th>Point6</th>
<th>L2TPv2</th>
<th>L2TPv3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Do two independent, commercially supported, demonstratetively interoperable implementations of all the components of the underlying technolog exist (interop)?

<table>
<thead>
<tr>
<th></th>
<th>ATS6</th>
<th>TSP</th>
<th>Point6</th>
<th>L2TPv2</th>
<th>L2TPv3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>40</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Have ISPs experimented with all the components of the solution successfully all together (deployment)?

<table>
<thead>
<tr>
<th></th>
<th>ATS6</th>
<th>TSP</th>
<th>Point6</th>
<th>L2TPv2</th>
<th>L2TPv3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Score:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>54.33333</td>
<td>85.83333</td>
<td>81.66667</td>
<td>100</td>
<td>59.66667</td>
</tr>
</tbody>
</table>

HUB & SPOKE case

0) Support Hub & Spoke cases
 a. NAT traversal
 b. Nomadicity (outer address may change)

1) Address allocation
 a. End point
 b. Prefix delegation

2) Scalability
 a. To the millions
 b. Set-up time

3) Multicast support

4) Authentication/Security
 a. PDU

5) OAM
a. Keep alive for NAT traversial
b. Logging / accounting
c. End point failure detection (inside the softwire)
d. Path failure detection (outside the softwire)

6) Available encapsulations
 a. IPv6/IPv4
 b. IPv6/UDP/IPv4
 c. IPv4/IPv6

7) L2 and L3 connectivity
 Inbound/out-of-band

MESH CASE
0) Support Mesh cases
 a. Announce reachability of prefixes of one AF across a network of another AF
 b. AFBRs perform dual-stack functionality

1) Scalability
 a. Number of AFBRs
 b. Routing table size
 c. Number of network peers

2) Available Encapsulations
 a. IPv6/IPv4
 b. IPv4/IPv6
 c. VPNs

3) Security
 a. Integration with deployed solutions
 b. Control session
 c. Encrypted data

4) Multicast Support

5) OAM
 a. Usage accounting
 b. End point failure detection
c. Path failure detection

6) Multihoming support
 a. Path Selection
 b. Preference/Policy

7) Does solution enable L2 and L3 connectivity
Mesh1 Mesh2

0 0