Applicability of the Tunnel Setup Protocol (TSP) for the Hubs and Spokes Problem
draft-blanchet-v6ops-tunnelbroker-tsp-03.txt

IETF Softwire interim meeting
Hong Kong, Feb. 2006

Florent.Parent@hexago.com
Jean-Francois.Tremblay@hexago.com
Overview

• **TSP and softwires requirements**
 – Non-technical
 • Relation to existing standards and documentation
 • Document status
 • Independent implementations
 • Deployments
 • Time to market
 – Technical
 • NAT traversal and encapsulation types
 • Nomadicity, address allocation and prefix delegation
 • Scalability
 • Multicast
 • AAA
 • O&M

• **Additional benefits**
 – Extensibility
 – Debugging and to diagnostics
 – Optimal encapsulation
Standards And Documentation

• **TSP is based on existing standards**
 – Based on the tunnel broker model (RFC3053).
 – SASL (RFC2222) is used as authentication framework.
 • Supports SASL anonymous (RFC2245)
 • Supports Digest-MD5 (RFC2831).
 – Uses standard v6v4 encapsulation as specified in RFC4213.

• **Documentation**
 – Version 2.0 of the protocol (with NAT traversal) as draft-blanchet-v6ops-tunnelbroker-tsp-00.txt.
 – Now published as draft-blanchet-v6ops-tunnelbroker-tsp-03.txt.

• **Status**
 – No issue presently documented concerning the protocol.
Implementations

- **Implemented on diverse client operating systems**
 - Windows, MacOSX, Linux, FreeBSD, OpenBSD, NetBSD, VxWorks.
- **Manufacturers have implemented the TSP client**
 - Draytek home gateway Vigor 2900VG
 - Panasonic HGW-502 and HGW-700
 - NEC Aterm BL170HV
- **Independent implementations**
 - ENST (for DSTM)
 - University of Southampton (basic implementation)
 - Planned for AICCU (SixXS client)
Deployment

- Tunnel Broker using TSP available for public use for the past 5+ years (www.freenet6.net)

- Tunnel Brokers using TSP are deployed in commercial networks for trials
 - KDDI
 - AT&T
 - Wanadoo

- Time to market
 - Mentioned in softwires problem statement as a major factor.
 - Solution based on TSP is already on the market since 2003.
 - TSP being a signaling protocol, existing OS resources (interfaces) are used to encapsulate traffic.
 - IPv6-in-IPv4 (RFC4213) interfaces are available on most dual-stack OSes.
Encapsulation

- IPv6-in-IPv4 (RFC4213)
- NAT traversal
 - IPv6-in-UDP-in-IPv4 encapsulation is supported for NAT traversal.
 - A keepalive mechanism exists to maintain the NAT state active.
 - In-band keepalive over IPv6
- IPv4-in-IPv6
 - TSP is designated as the preferred protocol to negotiate tunnel in the DSTM draft.
- All these encapsulation types are implemented and available today
- Other types of encapsulation can be added easily.
Addresses, Prefix Delegation and AAA

• Assignment of both temporary or permanent addresses is supported.
• Tunnel endpoints can be assigned with two /128 or a single /64.
• Prefix delegation with variable prefix length.
• Nomadicity is supported.
 – Authenticated users always get the same endpoint and prefix when reconnecting.
• TSP client-server authentication uses SASL
 – Server can use local database or external AAA server (RADIUS)
• User endpoints and prefix can be imported from the AAA server.
 – RFC3162, RFC2868
Scalability

- **Scalability factors:**
 - Number of simultaneous tunnels on “concentrator”
 - Bandwidth available for each tunnel
 - Setup time
 - Hardware assistance
- **Scalability is in large part implementation related**
 - A single broker with TSP support can handle up to 50,000 tunnels.
- **Several brokers can be used in parallel.**
- **When connecting (either with anycast or unicast), the client is redirected through TSP to the unicast address of one of the brokers in parallel.**

```
Client                           | Load-balancing | Broker
--------------------------------|---------------|--------
Incoming request                | Redirection   |        
                                 | New connection|
                                 |------------------->|
                                 |<------------------|
                                 |------------------|
                                 |------------------|
```
Scalability - Set-up time

- Depends on multiple factors
 - Number of message exchanges
 - Delay to contact AAA server
 - Security association set-up, if enabled

- TSP message exchanges
 - 7 messages when using anonymous authentication (RFC2245)
 - 9 messages when using digest-md5 (RFC2831)
Multicast, O&M

• **Multicast**
 - Established tunnels can transport multicast
 - MLD proxy or PIM can be used on softwire concentrator, depending on deployment scenario

• **O&M features:**
 - Logging: supported
 - Accounting: supported, statistics can be sent to a AAA server
 - End-point failure detection: the keepalive mechanism provides failure detection.
Other advantages

• Easy to debug, output can be read in text
• Easily expandable for new authentication methods and parameters through SASL and XML
• Encapsulation is optimal since it can be changed after the negotiation. For example, IPv6 in IPv4 can be used after negotiating over UDP.
Conclusion

- http://www.freenet6.net
 - Public tunnel broker using TSP
 - TSP client source code
 - IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)