Automatic configuration of IPv6 addresses for MANET with multiple gateways (AMG)

draft-ruffino-manet-autoconf-multigw-03

Simone Ruffino, Patrick Stupar

{simone.ruffino,patrick.stupar}@telecomitalia.it
AMG overview

- General-purpose, stateless solution for AUTOCONF
 - Designed for MANETs with multiple gateways announcing multiple prefixes

Overview:

- Nodes use ULAs as MLAs
- Proactive gateway discovery: GWs periodically flood prefix advertisements to all MANET nodes
 - MANET nodes build a set of global addresses (GA) and apply a ranking algorithm to it, using gateways metric, to choose which address to use for traffic
 - Nodes advertise the built GAs back in the MANET
IETF 66th – AUTOCONF wg

Design goals

- Applicable to many connectivity scenarios
 - In particular, to dynamic ones, where gateways can abruptly disappear
 - And where global address can frequently change
- Performance and robustness
 - Exploitation of all available gateways
- No special mechanisms required in the Internet
 - And, no unnecessary load on the gateways
- Lightweight address uniqueness check
- Re-use of all existing protocols/mechanisms developed in MANET WG
 - Focus on AUTOCONF protocol functionalities
Design choices

- Use of ULA as MANET-local addresses
 - draft-jelger-autoconf-mla-00 proposes 56+64 bits ULA random address: high probability of uniqueness
- DAD is not specified
 - AMG could be integrated with a Address Conflict Detection mechanism (passive preferred)
- Different gateways advertise different prefixes, hence nodes can configure multiple addresses
 - No coordination needed among gateways
 - RFC 3633 can be use to automatically delegate prefixes to GWs
 - *Issue*: nodes' choice of source address affects the downstream data path within the MANET
 - Best Prefix Selection algorithm introduced
Design choices (cont.)

- To minimize latency after an address change occurs, *Global Addresses Advertising introduced*

- Use of an external flooding engine (e.g. SMF) to announce prefixes within the MANET
- Use of RP messages to advertise nodes’ addresses
 - Because RP is responsible to install routes on the nodes
- Use of Generalized Packet/Message Format
 - Optimized for MANET and extendible
Phase I: MANET-local address configuration

- At bootstrap, nodes and gateways
 - build one ULA
 - configure it on one of their interfaces participating to MANET routing.
- Other MANET interfaces can be configured with ULA as well, but nodes must choose one of their MANET-local addresses as main address and activate the SMF process.
- MANET-local address should be used as originator address in routing protocol messages.
Phase II: Prefix Advertisement

- Gateways periodically advertise prefixes in Prefix Advertisement (PA) messages using SMF
 - PAs include validity time for prefixes

- PAs conform to the generalized message format, as specified in draft-ietf-manet-packetbb-00
Phase III: Global Address Configuration

- Nodes receive prefixes, carried in PAs, and build global address
 - They can configure one or more global addresses on interfaces
- Nodes rank Global Addresses applying Best Prefix Selection (BPS) algorithm
 - Goal: to provide hints on the “best” address to use as SA
 - It can use metric associated with Gateways, if available, taken from the Routing Table
- Two alternative algorithms:
 - Default Gateway method: nodes always choose prefix announced by the default gateway
 - Threshold method: nodes don’t change their ranking, unless current best gateway metric decreases below a threshold
Phase IV: Global Addresses Advertising

- Nodes advertise built global addresses to other MANET nodes
 - All or a subset (to decrease overhead)
- Other MANET nodes bind each other node's MANET-local address with the global addresses owned by each node.
 - Routes to global addresses of a node are available to all other MANET nodes (in particular, to gateways)
- DYMO, OLSRv1 and OLSRv2 can already support advertisement of multiple addresses, belonging to a single node
 - OLSRv1 can use MIDs, OLSRv2 can use TCs, DYMO can use RMs (for further study)
 - No new transport mechanism defined
MANET Node A
- fc00::1 → Main Address
- 2001:db8:0:c::1 → Global address
- 2001:db8:0:b::1 → Global address
- 2001:db8:0:a::1 → Global address

Routing table C (par.)
- fc00::1 → Next hop B
- 2001:db8:0:c::1 → Next hop B
- 2001:db8:0:b::1 → Next hop B
- 2001:db8:0:a::1 → Next hop B

BPS → 2001:db8:0:c::1
Best Prefix Selection

- BPS should be executed at bootstrap AND when particular events trigger a topological change in the MANET.
 1. Failure of the gateway owning the chosen prefix;
 2. A partition, after which the node and the gateway, owning the chosen prefix, belong to two different MANETs;
 3. A merging occurs, after which a gateway previously not connected to the MANET may have a better metric value;
 4. The gateway, which announces the chosen prefix, stops announcing prefixes
 - e.g. after shutting down the interface connecting it to the external network;
 5. After a movement of one or more MANET devices, a gateway has a better metric than the gateway announcing the chosen prefix;
- Threshold algorithm accounts for dynamic scenarios
Global Addresses Advertising

- GA Advertising minimizes outages after address change
 - Since nodes have already disseminated their "new" global address (after they first received prefixes from other gateways), they can start using it as SA with negligible latency.

- If Mobile IPv6 is used
 - A MN sends a BU when its global address changes
 - The gateway already has a valid route towards the new global GA
 - BA is immediately delivered, no route discovery needed
Pros and Cons

✓ Node can always use best path for “downlink traffic” and effectively exploit all available gateways
✓ Merging and partitioning cause no major problems
✓ Account for situations where gateways intermittently appear and disappear

✗ Optimized for proactive protocols
✗ Overhead of global address advertising (actually, optional)
Draft status

- Currently, version -03

Future work

- Interaction between Best Prefix Selection and IPv6 SA selection must be further studied
- Overhead introduced by GA Advertising should be further analyzed
- Detailed operations for OLSRv2
- Investigation on interactions with DYMO

Linux implementation (based on OLSRv1) and ns-2 code

- Demo at Mobicom 2005

For updated versions

- http://vesuvio.ipv6.cselt.it/ruffino/