
Key Change Strategies for TCP-MD5

Steven M. Bellovin
smb@cs.columbia.edu

http://www.cs.columbia.edu/~smb

mailto:smb@cs.columbia.edu

The Problem

● RFC 2385 has no key management
● It's hard to change keys – when one side

changes its key, it can't talk to the other
● Synchronization between organizations is

hard
● (As we move towards universal VoIP, you

won't even be able to call your peers to fix
the problem if routing is really borked...)

Goal

● Provide a mechanism for loosely
synchronized key rollover

● No over-the-wire protocol changes
● No need to co-ordinate code updates with

the other end
● Interoperate with existing code base

Algorithm

● Install a second key on the upgraded side
● When a segment arrives, try to validate it

against all keys
● The other end switches keys whenever it

wants
● When a segment arrives that uses the new

key, delete the old one
● Always transmit using the newest key you've

seen from the other side
● Optional: fall back to old key (or switch to

new one) if too many retransmissions

Why Not Replace 2385?

● Replacing 2385 with a better-designed
protocol is a great idea

● We could get key management, HMAC,
AES-CBC-MAC, and more

● But designing a new protocol takes time
● Code and test takes even longer
● Roll-out has to be co-ordinated with the far

side
● Even roll-out within an organization is painful

Issues

● CPU denial of service – garbage packets
have to be tried against all keys
– There won't be more than two keys; GTSM will

help
● Best behavior requires integration with TCP

retransmit logic
– Hooks may already be there to tie to routing and

ARP updates
● This will take time for design/code/test, too

– I think it will be noticeably shorter, and it's easier
to deploy

Acknowledgments

● Ron Bonica
● Randy Bush
● Sam Weiler
● Ross Callon

