Multicast Mobility in MI Pv6: Problem Statement Update

- draft-schmidt-mobopts-mmcastv6-ps-01.txt -

Thomas C. Schmidt, Matthias Wählisch

{schmidt, mw}@fhtw-berlin.de

HAW Hamburg & link-lab
Scope

- Status of the Draft
- Recall: Mobile Multicast Key Issues
- Mobile Source Problem
- Characteristics of Multicast Routing Trees under Mobility
- Solution Space
- Deployment Issues
Status of the Draft

- Several reviews on version 00
- New version 01 in Oct. 06:
 - Incorporates all reviews
 - New sections on deployment & routing tree characteristics
 - Largely extended section on solutions & bibliography
- First reviews on version 01:
 - Request to address initial CoA distribution for SSM sources
 - Request for application specific aspects (adaptations, ...)
 - Request to address nemo
 - Request to include further solutions
 - Editorial issues
Mobile Multicast: What is the Problem?

- Enable seamless session continuity
- Preserve multicast nature of packet distribution
- Approximate optimal routing (in concordance with mcast routing protocol)
- Unreliable, but avoid extra packet loss – bicasting o.k.

→ Address duality – logical (HoA) & topological ID (CoA), mcast apps. & SSM routers source address aware!

→ Decoupling of sources & receivers

→ Rapid movement vers. protocol convergence
Multicast Receiver Mobility

- Multicast Routing is ‘Mobile’:
 - On handover listeners may re-subscribe to multicast group (ASM & SSM)
- Problem: Multicast routing not seamless, but slow
 - Branch construction up to seconds
- Problem: Ensure multicast reception in visited networks without multicast support
- Problem: Realize native forwarding, whenever possible
- Routing: Experience ‘leave’ on detachment
Multicast Mobility Approaches

- Remote Subscription
 - Show all movement by local multicast subscription

- Bi-directional Tunneling
 - Hide all movement by tunneling via Home Agent

- Agent Based
 - Compromise: Intermediate agents shield Mobile
 - Approaches: Extend unicast expediting schemes M-FMIPv6, M-HMIPv6, context transfer, dynamic agents ...

Multicast Source Mobility

- Distribution Tree (somehow) rooted at source:
 - Collapses after movement
 - Reconstruction slow (protocol dependent)
 - RPs may facilitate mobility (as they are static)
 but: triangular routing (like BT) or active source discovery problem

- Address Duality Problem:
 - Logical ID: HoA at socket layer
 - Topological ID: CoA at routing layer (RPF checks!)

- Decoupling Problem on Handover:
 - Source has no feedback from receivers
Multicast Source Mobility: SSM ++Problems

SSM requires Source Filters:

- Receivers need to Subscribe to Source Addresses:
 - HoA & current CoA needed at Receiver
 - Receivers need to re-subscribe to nCoA

- Routers Maintain Source Specific States:
 - HoA & current CoA semantics at Routers

- Decoupling - Source cannot Control Receiver Initiated Updates:
 - May loose receivers on handover

- SSM should remain a ‘lightweight’ solution
Characteristics of Multicast Routing Trees: Chuang and Sirbu Scaling Law

 \[L_M(m) \approx \langle L_U \rangle \times m^{0.8} \]
 - This means: multicast shortest path trees are of self-similar nature with many nodes of small, but few of higher degrees
 - Trees are shaped rather tall than wide

- Exponent found to be topol.-independent

- Saturation due to full network exploration

- Van Mieghem et al. (2001):
 - Cannot hold in general
 - Reasonable approximation for current Internet size

Graphic from Chuang Sirbu (2001)
Properties of Shortest Path Trees

Assume: m multicast receivers are uniformly chosen out of N network nodes*, then

If the link weights are iid., exponential with mean 1, the Shortest Path Tree is a **Uniform Recursive Tree**

- URTs are well studied self-similar trees
- Relevant quantities can be derived analytically: Average hopcount, path weights, stability ...
- Allows to answer á priori deployment questions, e.g. cost efficiency of multicast ...

If the link weights are iid., exponential with mean 1, the Shortest Path Tree is a **Uniform Recursive Tree**

- URTs are well studied self-similar trees
- Relevant quantities can be derived analytically: Average hopcount, path weights, stability ...
- Allows to answer á priori deployment questions, e.g. cost efficiency of multicast ...
Analysis of ‘Moving’ Distribution Trees

- Multicast Distribution Trees subsequent under Mobility are highly correlated
- Previous and Next Tree overlap from receivers downward
- Coinciding subtrees: selfsimilar URT
- Results in frequent re-use of Mcast Router States
- Two characteristic measures
 - ‘Step-Size’: pDR-to-nDR Distance
 - Tree evolvement: Number of Receivers

Hochschule für Angewandte Wissenschaften Hamburg
Hamburg University of Applied Sciences
Evolution of Distribution Trees

Receiver Networks

Persistent Subtrees
- Self-similar subsets
- Identical stochastic properties
Simulation Study: Tree Coincidence wrt. pDR-nDR Distance

≈ 80 % Coincidence for 40 Receivers and a mobility ‘step-size’ of 5

Simulation Study: Tree Coincidence wrt. Tree Evolvement

> 80 % Coincidence for a mobility 'step-size' of 5 and 100 Receivers

![Graph showing coincidence percentage over number of receivers for different network scenarios.](image-url)
Source Mobility – Solution Space

- Statically Routed Trees:
 - Bidirectional Tunnelling (Xylomenos & Plyzos)
 - Rendezvous Points (mobility aware):
 Interdomain Backbone (Romdhani et al.)
 For SSM: Add HoA-record to MRPs to account for RPF check

- Reconstruction of Distribution Trees:
 - Agent-assisted Handovers: RBMOM (Lin et al.),
 M-HMIPv6 (Schmidt & Währisch) +++
 - For SSM: Listener-Initiated Tree reconstruction – based on
 HA-centred Control Tree (Thaler)
 Agent-assisted Tree Anchors + SDR announcements
 (Jelger & Noel)
Source Mobility – Solution Space (2)

- Tree Modification Schemes:
 - Tree Extension for new source locations in DVMRP SPTs (Chang & Yen)

- SSM Tree Modification Schemes:
 - Add RPF-redirect Hop-by-Hop Header to Mcast data in RP-based routing (O’Neill)
 - Extend previous tree by source routing, inject State-Updates through Hop-by-Hop signalling + initiate shortcuts (Schmidt & Wählisch)
 - Signal new CoA state along HA-based Tree in State-Update messages (Lee et al.)
Deployment Issues

- Complexity versus Performance Efficiency
 - IP Layer : Application Layer : Hybrids

- Keep Infrastructure in Mobility Agnostic State
 - Restrict mobility management to end nodes (?)

- Security
 - Preserve trust equivalent to unicast routes
 - Prevent interference with unicast Binding Caches
 - Care for SSM source admission control
Multicast Mobility at IETF

draft-jelger-mssmv6-00.txt - 2002
draft-oneill-mip-multicast-01.txt – 2003
draft-suh-mipshop-fmcast-mip6-00 - 2004
draft-schmidt-waehlisch-mhmipv6-04.txt – 2005
draft-miloucheva-mldv2-mipv6-00.txt – 2005
draft-zhang-mipshop-multicast-dma-02.txt – 2006
draft-xia-mipshop-fmip-multicast-00.txt – 2006