VoIP Shim for RTP Payload Formats

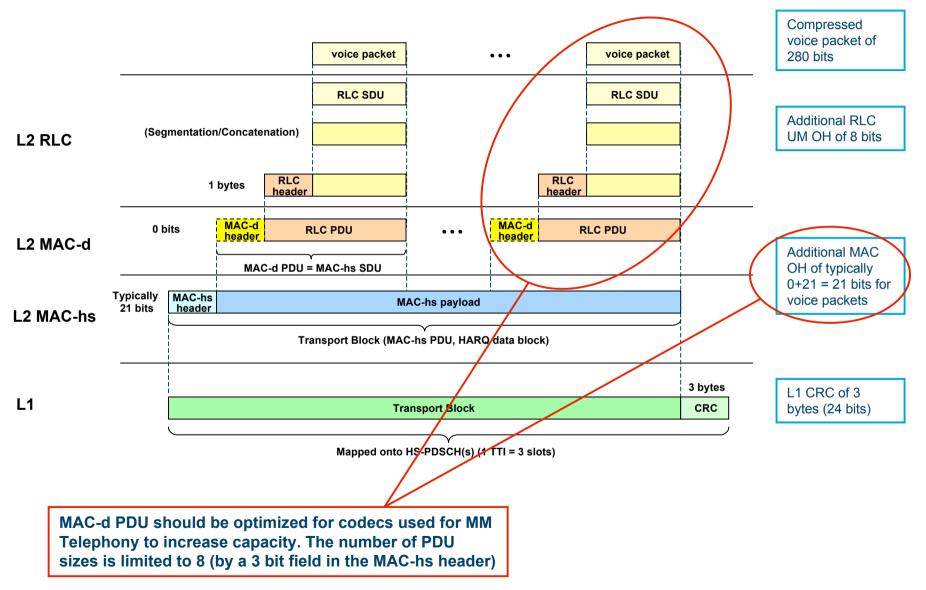
draft-johansson-avt-rtp-shim Ingemar Johansson, Ericsson AB

Outline

- MTSI in 3GPP Voice service requirements
- Problems with RTCP
- Why is inband signaling better in this application ?

Some buzzwords

- 3GPP (3rd Generation Partneship Project)
 - Standardization body for WCDMA and GSM
 - http://www.3gpp.org
- HSPA (High Speed Packet Access)
 - Aka "Turbo 3G"
 - Constantly evolving
 - HSDPA (High Speed Downlink Packet Access)
 - EUL (Enhanced UpLink)
 - ~10Mbps (various figures)
- GPRS (General Packet Radio Service)
 - "Internet for GSM"
 - Bitrates up to ~40kbps
- EDGE
 - Improvement to GSM-GPRS
 - More complex modulation techniques
 - Bitrates up to ~480kbps
- MTSI (Multimedia Telphony Service for IMS)
- IMS (IP multimedia System)
- AMR (Adaptive Multi-Rate codec)
 - Both narrow band (300-3500Hz) and wideband (50-7000Hz)
 - Payload format standardized in RFC3267


MTSI in 3GPP

- Multimedia telephony service specified in 3GPP
- Involves Video and Voice + other components such as Text.
- IP protocol based.
- Highly optimized radio bearers.
- Header compression for capacity boost.

3GPP VoIP bearers

- Highly optimized radio bearers tailored to fit with packet sizes for AMR.
 - Target is as many (satisfied) users as possible.
 - Minimized lower layer overhead.
 - IP/UDP/RTP header compressed to ~3byte RoHC overhead by means of header compression.
- Use of larger packet sizes comes with a cost :
 - In HSPA systems many retransmission at lower layers possible → more jitter, greater risk of packet loss when user close to cell border (coverage issue).
 - EDGE non persistent mode limits to maximum one retransmission (delay req.) → Very high risk that large packets are lost in bad radio conditions.
 - Preferrable that packet sizes becomes smaller when users reach cell border.

HS-DSCH Data transmission

PDU optimization

• The speech codec determines PDU sizes

MAC-d PDU size	Comments
96, 112	To be used for SID frames
144	Optimized for AMR-NB 4.75+3 bytes ROHC
160	Optimized for AMR-NB 5.90+3 bytes ROHC
176	Optimized for AMR-WB 6.60+3 bytes ROHC
192	Optimized for AMR-NB 7.40+3 bytes ROHC
208	Optimized for AMR-NB 7.95+3 bytes ROHC
224	Optimized for AMR-WB 8.85+3 bytes ROHC
288	Optimized for AMR-NB 12.2+3 bytes ROHC
296	Optimized for AMR-WB 12.65+3 bytes ROHC
312	AMR-NB 12.2 + 6 bytes ROHC
344 (alt. 336)	To be used to convey larger packets (video, ROHC IR-DYN packets etc)

- Video or other real-time media creating large packets will be segmented and use the largest possible PDU size
- The use of large PDU sizes leads to less coverage than when using small PDU sizes

The need for adaptation

- Radio network performance is defined on a large scale basis.
 - Admission control determines if new users (VoIP calls) should be admitted.
 - Metric : percentage of satisfied users.
 - Éven though retransmission scheduling algorithms do their best some unlucky users might experience poor quality.
- Fast application adaptation is needed
 - Fast reduction of codec rate enables better coverage for users at cell border.
 - Handover to other networks with different properties demands different application layer behavior.
 - EDGE or 802.11a gives better performance if the packet rate is reduced → frame aggregation preferrable
 - HSPA applies dynamic frame aggregation on lower layers by means of retransmission → frame aggregation gives no/little improvement.

Adaptation requests vs metrics

- Metrics is the established feedback entity esp. in IETF
 - Exceptions exists (eq. Full Intra Request in draft-ietf-avt-avpf-ccm)
- Requests
 - Simple entities such as ____
 - Reduce codec rate.
 - Employ redundancy.
 - Enable frame aggregation Combinations of the above
 - Possible to send requests to other endpoint based of features that are only known in terminal.
 - Handover to different network that requires eg lower packet rate for optimum performance
 - High load
 - Close to cell border.
 - Many features are access specific \rightarrow difficult to standardize as metrics to transmitted
 - Request does not mean that it is mandaded to follow.
 - A request for redundancy may very well be rejected in case the receiver of the request finds it inappropriate.
 - Can be transmitted inband (in the RTP flow) or out of band (RTCP)

Inband vs. Out of band

- Inband :
 - Signaling is transmitted in the RTP flow.
 - Example CMR bits in RFC3267 (AMR payload).
 - Inband signaling proposed in draft-johansson-avt-rtp-shim.
- Out of band :
 - Signaling is transmitted by means of a protocol (e.g RTCP), separated from the RTP flow.

Why inband ?

- Why not stick to RTCP ?
 - Inband signaling messes with the RTP architecture
 - RTCP has many benefits, solves many issues quite nicely
 - RTCP useful for performace monitoring

Problems with RTCP

Periodicity

- RTCP must be transmitted on a periodic basis even though the application does not need it.
- AVPF relaxes things a bit (immediate/early mode)
 - Still not possible to send "only when necessary"
- Principle can be questioned
 - No large impact on capacity as RTCP bandwith is constrained

Problems with RTCP Packet size

- A minimum required RTCP entities are mandated even though they are not (always) needed.
 - SR or RR with report block(s) + SDES(CNAME) mandated.
 - Minimum size is ~100 bytes (+IP/UDP), can be much larger however depending on CNAME string
 - IP/UDP can be compressed with RoHC but thats all.
- RTCP packet size typically ~3-4 times larger than VoIP RTP packets.
 - Will become segmented in optimized VoIP bearers → increased risk that RTCP packets are lost.
- "Schrödinger's cat" problem
 - Performance monitoring by means of RTCP in highly VoIP optimized transmission channels can affect the RTP flow considerably making performance monitoring this way questionable.

© Ericsson AB 2006

What are the options

- Inband signaling (as proposed in draft-johansson-avt-rtp-shim)
 - Useful for point to point communication
 - Small overhead
 - Controversial
- RTCP cheats (abuse)
 - Use RR instead of SR
 - NTP only needed for synch eg. between Voice and Video
 - Send RTCP with zero report blocks
 - Report blocks can be sent only once in awhile
 - Skip SDES-CNAME
 - ...or don't send it in every RTCP
 - Is there any need for this in a point to point application ?
 - Must be verified that middle boxes accept this..
- Additional RTCP compression ?
 - Unknown if it is possible to achive good compression

ERICSSON SERICSSON SERICSSON