
ssmping
No draft yet, sorry

Stig Venaas
venaas@uninett.no

ssmping

A tool for testing multicast connectivity and more
Behaviour is a bit like normal icmp ping
Implemented at application layer using UDP

No additional requirements on the operating system
The operating system and network must support SSM

A server must run ssmpingd
A client pings server by sending unicast ssmping query
The server replies with both unicast and multicast
ssmping replies
In this way a client can check that it receives SSM from
the server

You can run your own server, also several public IPv4 and IPv6
servers on the Internet
And also parameters like delay, number of router hops etc.

How it works
Client Server

User runs
ssmping <S>

Client joins S,G

Clients sends
unicast to S

Server receives unicast
ssmping query

Responds with ssmping
unicast reply and
multicast reply to G

Client receives
replies and
prints RTT and
hops from
server

Client sends a
new query every
second

t t

Example output

$ ssmping -c 5 -4 flo.nrc.ca
ssmping joined (S,G) = (132.246.2.20,232.43.211.234)
pinging S from 158.38.63.20
unicast from 132.246.2.20, seq=1 dist=13 time=122.098 ms
unicast from 132.246.2.20, seq=2 dist=13 time=122.314 ms

multicast from 132.246.2.20, seq=2 dist=13 time=125.061 ms
unicast from 132.246.2.20, seq=3 dist=13 time=122.327 ms

multicast from 132.246.2.20, seq=3 dist=13 time=122.345 ms
unicast from 132.246.2.20, seq=4 dist=13 time=122.334 ms

multicast from 132.246.2.20, seq=4 dist=13 time=122.371 ms
unicast from 132.246.2.20, seq=5 dist=13 time=122.360 ms

multicast from 132.246.2.20, seq=5 dist=13 time=122.384 ms

--- 132.246.2.20 ssmping statistics ---
5 packets transmitted, time 5003 ms
unicast:

5 packets received, 0% packet loss
rtt min/avg/max/std-dev = 122.098/122.286/122.360/0.394 ms

multicast:
4 packets received, 0% packet loss since first mc packet (seq 2)
recvd
rtt min/avg/max/std-dev = 122.345/123.040/125.061/1.192 ms

What does the output tell us?

13 unicast hops from source, also 13 for
multicast
Multicast RTTs are slightly larger and vary more

The difference in unicast and multicast RTT shows
one way difference for unicast and multicast replies,
since they are replies to the same request packet

The multicast tree is not ready for first multicast
reply, ok for 2nd

No unicast loss, no multicast loss after tree
established

Is it useful?

Complements multicast beacons
Useful for “end users” or others that want to perform a
“one-shot” test rather than continuously running a
beacon
Beacons don’t show how long it takes to establish the
multicast tree, they only show the “steady state”

We’ve seen cases where it takes much longer than expected
Neither do they compare unicast and multicast
Are there other data than RTT and hops that should
be measured?

Hops are measured by always using a ttl/hop count of 64
when sending replies

History

Based on an idea by Pavan Namburi, Kamil Sarac
University of Texas and Kevin C. Almeroth UCSB

http://www.utdallas.edu/~ksarac/research/publications/draft
-sarac-mping-00.txt
http://www.utdallas.edu/~ksarac/research/publications/CIIT
04-1.pdf

Their idea involves extending IGMP/MLD
Presented IETF 58 mboned meeting, not much interest, I
believe it was suggested to just use UDP

This does some of the same, but doesn’t require
network support

Only uses UDP
But it requires server to run ssmpingd

Summary

Tool and further documentation available from
http://www.venaas.no/multicast/ssmping/

You can deploy your own server, or check that
you can receive from the public servers listed at
the above URL
Supports both IPv4 and IPv6
Currently it works for Linux, Solaris, Windows
XP/Vista and some BSD systems

Note that ssmping client requires SSM support

Also asmping. Example output:

sv@xiang /tmp $ asmping 224.3.4.234 ssmping.uninett.no
ssmping joined (S,G) = (158.38.63.22,224.3.4.234)
pinging S from 152.78.64.13
unicast from 158.38.63.22, seq=1 dist=23 time=57.261 ms
unicast from 158.38.63.22, seq=2 dist=23 time=56.032 ms

multicast from 158.38.63.22, seq=2 dist=7 time=207.876 ms
multicast from 158.38.63.22, seq=2 dist=7 time=208.567 ms (DUP!)
unicast from 158.38.63.22, seq=3 dist=23 time=56.852 ms

multicast from 158.38.63.22, seq=3 dist=21 time=70.352 ms
multicast from 158.38.63.22, seq=4 dist=21 time=57.208 ms
unicast from 158.38.63.22, seq=4 dist=23 time=57.910 ms
unicast from 158.38.63.22, seq=5 dist=23 time=56.206 ms

multicast from 158.38.63.22, seq=5 dist=21 time=57.375 ms

Next steps

Want to reserve port number and/or SRV name
Tool is getting pretty popular, so think about time

Might be useful to reserve IPv4/IPv6 multicast address
Some of this requires an RFC
Specifying the protocol also allows other
implementations

Currently one other independent server implementation
I will submit draft well before the next meeting

Unfortunately got too late for this one
Input on protocol welcome

Preventing misuse/DoS
Make sure it’s flexible/extendible

