ROA Contents & Format Proposal

Brian Weis

Overview

- An informal study was conducted considering
 - ROA Contents
 - Based on Steve Kent's earlier presentations
 - ROA Format
 - Design Considerations
 - Three possible formats studied

ROA Contents

- Data necessary to have a fully specified ROA:
 - **Object type** (I.e., "ROA")
 - Plan ahead for other object types (e.g., signed AS policy)
 - Object version (l.e., "1")
 - Address prefix(es)
 - May be a subset of addresses in the EE set?
 - AS number(s) authorized to advertise the address prefixes in the ROA
 - Validity interval (I.e., start/stop times)
 - May be shorter than the EE validity period in an emergency?
 - Signature list
 - Including certificate pointers and other necessary parameters

ROA Design Considerations

- Design Considerations
 - Size. Distribution through a network protocol may be advantageous in some cases
 - Extensibility. Format should allow standardstrack additions to the format.
 - Open source tool availability. Tool availability is crucial to adoption.
 - Clearly defined canonicalization rules. Needed to support reliable digital signatures

ROA Format

- Three data formats considered
 - Simple TLVs
 - Header + Type-Length-Value attributes representation of the data
 - -ASN.1
 - -XML

TLV Format

- Header
 - Object Type
 - Version
 - Object Length
- Attributes

Object Header					
Auth AS					
Туре	Len	Validity			
Туре	Len	Signature			

ASN.1 Format

- Imports many definitions from RFC 3280 and RFC 3779
 - No reason to re-specify common fields
 - ASN.1 open source tools already contain support for these definitions
- New ASN.1 definitions create an ROA framework for imported definitions.

ASN.1 Format (Abridged)

```
so OBJECT IDENTIFIER ::= {joint-iso-ccitt(2) ds(5) 40 }
so-roa OBJECT IDENTIFIER ::= { so 1 }
SO ::= SEQUENCE {
       sObject
                               SObject,
        signatures
                               SEQUENCE OF Signatures }
SObject ::= SEQUENCE {
       signedObjectType
                               Type,
                          [0] EXPLICIT SOVersion DEFAULT v1,
       version
       validity
                               Validity,
       ipAddrBlocks
                               SEQUENCE OF IPAddressFamily,
        asIdentifiers
                               SEQUENCE OF ASIdentifiers }
Type
               INTEGER { roa(1) }
       ::=
SOVersion ::= INTEGER { v1(0) }
Signatures ::= SEQUENCE {
        certificatePointer
                               AuthorityKeyIdentifier,
       authorityInfo
                               AuthorityInfoAccessSyntax,
        signatureAlgorithm
                               AlgorithmIdentifier,
        signatureValue
                               BIT STRING }
```

XML Format

- Basic ROA Document Type Definition (.dtd file) is simple
- The digital signature specification is taken from RFC 3275
 - Signature XML elements are added during the signature process

XML ROA

<!ELEMENT SO (sObject)>

<!ELEMENT sObject (signedObjectType,version, validity, ipAddrBlocks*, asIdentifiers*)>

- <!ELEMENT signedObjectType (#PCDATA)>
- <!ELEMENT version (#PCDATA)>
- <!ELEMENT validity (notBefore, notAfter)>
- <!ELEMENT notBefore (uctTime)>
- <!ELEMENT notAfter (uctTime)>
- <!ELEMENT uctTime (#PCDATA)>
- <!ELEMENT ipAddrBlocks (IPAddressFamily,addressPrefix)>
- <!ELEMENT IPAddressFamily (addressFamily)>
- <!ELEMENT addressFamily (#PCDATA)>
- <!ELEMENT addressPrefix (#PCDATA)>
- <!ELEMENT asIdentifiers (id*)>
- <!ELEMENT id (#PCDATA)>

MSEC WG

Sample ROA

- Comparison of an ROA in the three formats
 - Type: ROA
 - Version: 1
 - Two prefixes
 - Two authorized ASes
 - One signature (RSA 1024-bit)

Design Considerations

	TLV	ASN.1	XML
Size (bytes) of sample ROA	286	445	1654
Extensible	Yes	Yes	Yes
Open Source Tools?	No	Yes (asn1c)	Yes (XMLSec)
Canonicalizaton?	TBD	Yes (DER)	Yes (RFC 3275)

Conclusion: ASN.1 is the best compromise

- While DER is substantially larger than a simple TLV format (35% larger) it remains manageable.
- ASN.1 is easily extensible.
- Canonicalization rules are well defined.
- Use of ASN.1 has some synergy with Resource Certificates.
- Open source ASN.1 compiler tools appear to hide much of ASN.1 required knowledge from tools developers.

Next steps

- Get consensus on the content & format
- Generate a -00 draft describing the ROA prior to IETF 68