

A [D]TLS-based GSS Mechanism

REQUIRED Goals

● MUST provide GSS-API semantics
● MUST adhere to PKIX
● Must be reviewed

Desirable Goals

● Channel binding support
● Easy to review
● Easy to implement

● Including kernel-mode implementation of per-message
tokens. After all, the NFSv4 community wants this mech,
and several implementations put per-message tokens in
OS kernel-land.

● Support for PKIX-specific name types
● Support for existing use of existing certs

Quick Sketch: Sec Context Tokens

● Use TLS as is
● Don't “decorate on the outside”
● Except for the standard header on initial context tokens

● TLS handshake protocol messages →
GSS mech context tokens
● ClientHello → initial context token

● Use TLS extensions for channel binding,
asserting names, indicating acceptor name

● RFC4680-based extensions

Benefits of Using TLS

a) Much simpler to specify than SPKM-type
designs

b) Much simpler to review and analyze also
● Assume that TLS is OK, go from there

c) Specification re-use → implementation re-use
● There exist plenty of TLS off-the-shelf implementations

d) TLS exts. will benefit non-GSS TLS apps too

Quick Sketch: Channel Binding

● TLS ext., like RFC4681, based on RFC4680
● Client and server tell each other that they want

to do channel binding in their Hellos

● Channel bindings sent in SupplementalData
extension (see RFC4680)

● Or not sent, as long as they’re included in the Finished
message computation!

● GSS semantics, even krb5 mech semantics
● OPTIONAL

Quick Sketch: Naming

See also naming presentation

● [OPTIONAL] TLS ext. for asserting a GeneralName
● Or, rather, index of name. See naming preso.
● SupplementalData (see RFC4680)

● [OPTIONAL] TLS ext. for indicating the desired
target name

● Like TLS ServerName indication, but more general

● Exported name token format, default name
selection → see naming presentation

Quick Sketch: Per-msg Tokens

● TLS record protocol messages don't provide
out-of-sequence processing support needed for
GSS-API
– DTLS does

● We can either
– Use DTLS record protocol for per-msg tokens

– Re-use RFC4121 (krb5 mech) per-msg tokens
● Or krb5 for some cipher suites and DTLS for the rest

Quick Sketch: Per-msg Tokens

● Using DTLS record protocol messages for per-
msg tokens → pure TLS-based mech

● But re-using krb5 mech per-msg tokens would
greatly simplify implementation for NFSv4
– Since NFSv4 implementations tend to be kernel-

mode and they tend to implement GSS per-msg
token processing in kernel-land
● Linux, *BSD, Solaris, ONTAP
● Same may apply to CIFS

On Per-msg tokens

● DTLS pros
– Gets us new TLS cipher suite additions for free

● DTLS cons
– Less available than TLS?

– How many off-the-shelf kernel-land record protocol
implementations?

On Per-msg tokens

● Re-using Kerberos V – pros
– Readily available implementations, including kernel-

land implementations

– Gets us new Kerberos V enctype additions for free

● Cons
– Not pure TLS...

– Is TLS likely to get new ciphersuites faster than
Kerberos V is likely to get new enctypes? Probably
● So what?

On Per-msg tokens

● Or do both! And negotiate which one through a
TLS extension.
– One can be REQUIRED by the spec, the other can

be OPTIONAL

– Or maybe REQUIRE use of the Kerberos V mech's
per-msg tokens for when the negotiated TLS cipher
suite has a close-enough equivalent Kerberos V
enctype today
● e.g., AES w/ HMAC-SHA-1

GSS-TLS Sketch: Putting it all
together

● TLS handshake messages → context tokens
– Prepend standard GSS initial context token header

to ClientHello

● Channel binding as a TLS extension
● TLS extensions for asserting peers' intended

canonical name and for initiator to indicate
intended acceptor name

● TBD: Per-msg tokens: krb5 per-msg tokens vs.
DTLS record messages

Misc Details, Q/A

● Need GSS QoPs for TLS cipher suites
● Need GSS extensions to make QoPs usable though

● Obviously, a TLS-based mech would support
GSS_C_NT_ANONYMOUS

