Prague, March 2007

IETF 68 – IFARE

IPsec Failover and Redundancy Problem Statement and Goals

draft-vidya-ipsec-failover-ps-01

Presented by: Yaron Sheffer

Contributors

- Lakshminath Dondeti
- Paul Hoffman
- Tero Kivinen
- Gregory Lebovitz
- Marcus Leech
- Cheryl Madson
- Vidya Narayanan (Ed.)
- Michael Richardson
- Sheela Rowles
- Yaron Sheffer
- Marcus Stenberg
- Brian Weis

2

The Problem

- Fast re-establishment of IPsec SAs
- What forces clients to re-establish IPsec SAs
 - Network failures (affect reachability to IPsec gateways)
 - Gateway failures
 - Failure of application servers using IPsec

Issues with re-establishment

- Large number of clients establishing SAs with gateways after failover in a short time span
 - IKEv2 is computationally expensive
 - DH and potential use of public keys
 - When EAP is used for client authentication in IKEv2
 - SA establishment involves several more roundtrips
 - User may be prompted again for credentials
 - Too many hits on the AAA server

3

Applicability

Servers using IPsec

- Other applications such as Mobile IPv6 use IPsec for protection of signaling
 - IPsec may be used in tunnel or transport mode
- Applications may have interoperable solutions for server failover
 - Incomplete without IPsec failover
 - Either interoperability or seamless failover is not available without IPsec failover
- Application servers handling large number of clients have to handle large number of IPsec SAs
 - SAs may be a mix of transport and tunnel mode

IPsec Gateways

Always handle tunnel mode traffic

IPsec Failover Solutions Today

- Run IKEv2 again with the new gateway
 - Inevitable today when the gateway address changes
 - Inevitable if client or gateway has reset the session state
- Proprietary solutions exist when gateways have the same address
 - Failover transparent to clients
 - Gateway to gateway SA transfer protocol is proprietary
- What's wrong with this state of affairs?
 - Problems with running IKEv2 again covered in the previous slide
 - Proprietary solutions have obvious limitations
 - Gateways cannot be distributed globally without complex network planning
 - Gateways cannot all be active for the same IP address
 - Lack of interoperability

Solution Goals (1/2)

• Distributed Failover

 Gateways may be located at different sites and may not share the same IP address or have the same view of the network

Client Involvement

 Given that the gateways may be distributed, the failover cannot be transparent to the client

Low Latency failover

- IPsec gateway having to handle a flood of IKEv2 exchanges upon a failover
- Low latency requirements of applications that use IPsec, e.g., Mobile IPv6

Application Usage of IPsec

Need to take requirements of applications of IPsec in designing the failover solution

6

Solution Goals (2/2)

Interoperability

- Client-gateway and gateway-gateway interoperability is required

Stateless Failover

- Infrastructure remains stateless; state is stored in the client

Stateful Failover

- Must be possible to store IKEv2/IPsec state in the infrastructure
- Support for IPsec transport and tunnel modes

