Current work in Internationalization Around the IETF John Klensin

General i18n character issues

- Making Unicode the "new ASCII"
- Long-standing interoperability tension:
 - Standard on the wire, conversion at endpoints
 - Negotiation with servers for client-desired charsets

Unicode in Practice

- Except in
 - Completely free text (e.g., no matching or sorting)
 - Markup
 - ... Issues of normalization and exclusions
- In the general case,
 - can't code a character in isolation
 - What is "A" ?
- Standard gets bigger
 - ASCII was a closed set no characters added

Unicode Encodings

- With ASCII, one encoding
 - Seven bits, in eight-bit field, leading zero bit (RFC20)
 - Exactly one way to code each character
- Unicode
 - Coding
 - UTF-32 (UCS-4)
 - UTF-16
 - UTF-8
 - Any big-endian or little-endian in principle
 - Many characters can be coded in different ways

Patrik's Slides Go Here

Target An Internationalized Internet

- Important to get things right
 - Reasons for ASCII focus decades ago
 - No choice, not no interest
 - Protocol design versus UI design
- What would it look like if we started today
 - Protocol elements *still* in ASCII
 - Still in need of normalization and exclusion in many contexts

Many Foundation Pieces

- Some done or nearly done (we hope)
 - Language Tag work: LTRU (RFC4645 etc.)
 - Comparators, collation, and registry (RFC4790)
 - UTF-8 definition (RFC3629)
- Some being reexamined after experience – IDNA (RFC3490 etc.)

Some Actual Applications Work in Various Stages

- Protocols
 - Email Address & Header Internationalization
 - IMAP Extensions
 - SASL & Certificate Work
- Pain level example
 - Email addresses are used as identifiers all over the net
 - Many applications and databases can't get existing ones right (RFC3696) – real opportunities with internationalized ones.

More Foundation Work

- Unicode in ASCII Contexts
 - Escapes in old protocols
 - draft-klensin-unicode-escapes
- Standardizing a text stream form
 - Protocols using unstructured text data
 - Historically: telnet, ftp, whois, ...
 - But even the text/plain media type
 - Parallel to "net ASCII" / NVT ASCII
 - draft-klensin-net-utf8

IDNA: A 30 Second Summary

- Non-ASCII strings converted to coded form ("Punycode") by applications.
- Special prefix "xn—" to distinguish from conventional domain names
- Many Unicode characters mapped to others (mappings are one-way)
- Mappings and procedure tied to Unicode 3.2: no upgrade plan
- Unicode sequences are normalized to remove some representation differences
- Result looks to DNS like a host (LDH)-type name No DNS changes.

IDN Issues More on the IAB Report (RFC4690)

- Problems that need solving and might be solvable
 - Too much confusion about what really happens
 - Versions of Unicode
 - Character confusion
 - Largely a registration problem
 - Can't rely completely on registries

- Some Unicode non-optimality for IDN use

Proposed New Work

- Highlights
 - Terminology
 - Isolating UI Issues from Protocol
 - Unicode Version-agility
 - Inclusion and Reduced Character Collection
 - Technical Fixes

...Coming back to most of these...

- No Changes to Stringprep that would affect other protocols
- Overview in draft-klensin-idnabis-issues

IDNA: New Terminology

- What string does "Punycode" designate? What are its properties?
 - With or without prefix?
 - Valid or not?
- So
 - U-labels
 - A-labels
 - LDH-labels

Unicode Versions

- INDA 2003 linked to Unicode 3.2
- Applications use libraries to do the work
 - Libraries change with operating system and language updates
 - Application often can't tell version
 - So "defined for one version of Unicode" is meaningless in practice
- Solution: Make protocol insensitive to Unicode versions – "Version-agile"

IDNA: Localization and UI

- Users don't need i18n except for I10n
- Key UI issue is proper localization for – Culture – Fonts
 - Language -- Presentation & Display
- Can't be reflected in DNS
- Hence
 - Less mapping in protocol
 - U-label \leftrightarrow A-label
 - Standardizing forms in IRI to U-label

IDNA: New Tables

- Inclusion, not Exclusion
 - Need a reason
 - "Want to" is not a reason
 - DNS integrity and ability to parse names in context are key goals
- Table Model
 - Yes
 - No ("language characters" only)
 - Pending (probably yes)
 - Pending (probably no or much later)

New IDN Tables Symbols and Punctuation

- All excluded
- Parallels Hostname Rules
- Avoids parsing problems when embedded in other protocol strings (e.g., URIs/ IRIs)
- Not rational to make decisions one character at a time

New IDN Tables The Pending — Yes Transition

- "Language Characters" only
 - Characters that can be used to write words
 - Of course, DNS labels don't need to be words
- Requires a user community for script
- Special presentation issues must be sorted out.
 - Position-dependent presentation
 - The "zero-width" objects

IDNAbis Changes in Practice

- Character → Character mappings become UI responsibility
 - Most reasonable ones won't change
- More Characters
 - Larger number permitted in registered strings
 - Better BIDI treatment
- No Unicode version restriction
- All easier to understand and explain

Thanks To

The IDNAbis team

Harald Alvestrand

- Tina Dam
- Patrik Fältström Cary Karp
- Other contributors to presentations
 - Leslie DAIGLE
 - Mirjam KÜHNE
 - LEE XiaoDong

- Ted HARDIE
- **Hichem MAALAOUI**
- Pete RESNICK

Discussion Lists

- General: discuss@apps.ietf.org
 - net-utf8
 - unicode-escapes
- IDNAbis: idna-update@alvestrand.no
- WG Documents

– Obvious WG mailing lists – see charters