TLS WG

Eric Rescorla
Network Resonance
ekr@networkresonance.com
Agenda

1. Agenda bashing (5 minutes) - chairs
 - Bluesheets
 - Agenda changes
 - Scribe for minutes
 - Jabber scribe

2. Document status (5 minutes) - chairs
 - Progress since last IETF

3. TLS 1.2 (60 minutes) - Eric Rescorla

4. TLS GCM (10 minutes) - Abhijit Choudhury

5. EAP Authentication (10 minutes) - Yaron Sheffer

6. GSS-API Authentication (10 minutes) - Stefan Santesson

7. Discussion of GSS/EAP (20) - All

8. TLS Extractors (10) - Eric Rescorla
Document Status

<table>
<thead>
<tr>
<th>TLS 1.1</th>
<th>RFC 4346 (PS)</th>
<th>Published</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensions (revised)</td>
<td>RFC 4346 (PS)</td>
<td>Published</td>
</tr>
<tr>
<td>Datagram Transport Layer Security</td>
<td>RFC 4347 (PS)</td>
<td>Published</td>
</tr>
<tr>
<td>ECC Cipher Suites</td>
<td>RFC 4492 (PS)</td>
<td>Published</td>
</tr>
<tr>
<td>Transport Layer Security (TLS) Session Resumption without Server-Side State</td>
<td>RFC 4505 (PS)</td>
<td>Published</td>
</tr>
<tr>
<td>TLS User Mapping Extension</td>
<td>RFC 4681</td>
<td>Published</td>
</tr>
<tr>
<td>TLS Handshake Message for Supplemental Data</td>
<td>RFC 4680</td>
<td>Published</td>
</tr>
<tr>
<td>Transport Layer Security (TLS) Authorization Extensions</td>
<td>draft-housley-tls-authz-extns-07</td>
<td>Published</td>
</tr>
<tr>
<td>Using OpenPGP keys for TLS authentication</td>
<td>draft-ietf-tls-openpgp-keys-10</td>
<td>Re-last-called</td>
</tr>
<tr>
<td>Using SRP for TLS Authentication</td>
<td>draft-ietf-tls-srp-12</td>
<td>RFC Ed Queue</td>
</tr>
<tr>
<td>Pre-Shared Key Cipher Suites with NULL Encryption for Transport Layer Security (TLS)</td>
<td>RFC 4785</td>
<td>Editors revising</td>
</tr>
<tr>
<td>AES Counter Mode Cipher Suites for TLS and DTLS</td>
<td>draft-ietf-tls-ctr-01.txt</td>
<td>Published</td>
</tr>
<tr>
<td>The TLS Protocol Version 1.2</td>
<td>draft-ietf-tls-rfc4346-bis-03.txt</td>
<td>Working... (missed for this meeting)</td>
</tr>
</tbody>
</table>

Working...
TLS 1.2 Status

Eric Rescorla
Network Resonance
ekr@networkresonance.com
“Major” Changes

- Require Bleichenbacher and timing attack protection [issues 17 and 12].
- Made maximum fragment size a MUST [issue 9]
- Remove ephemeral RSA [issue 3]
- Stripped out discussion of how to generate the IV and replaced it with a randomness/unpredictability requirement [issue 7]
- Stripped out discussion of how to generate the IV and replaced it with a randomness/unpredictability requirement [issue 7]
- Removed extension definitions and merged the ExtendedHello definitions [issues 31 and 32]
- Cleaned up backward compatibility text [issue 25]
Open Issues: DigestInfo Parameters

• Should we include NULL parameter in encodings?

• My read of PKCS#1 v2.1 is that NULL is encouraged for PKCS#1 1.5

• Proposal: MUST use NULL; MUST accept either NULL or no parameters.
Open Issue: Hash Agility for Signatures

- TLS 1.0, 1 did not let you specify which hash you used
 - Mandated SHA-1 for DSA, MD5/SHA-1 for RSA
- Current draft allows you to specify allowable hashes
- ...but places two objectionable reqts
 - Must use SHA-1 with DSA (what about long keys?)
 - Must use same algorithm as your certificate has
- Minimal proposal
 - Either side can sign with any hash offered by peer
 - List offered in preference order(?)
 - DSA/ECDSA MUST be used with acceptable variant of SHA (defined elsewhere?)
- Should we move the server’s indication to an extn.?
Open Issue: Alerts

- Which alerts MUST be fatal?
- Which alerts MUST be sent?
- Concern about requiring too many alerts (cf. Bleichenbacher)
- Proposal:
 - agree on what alerts are fatal
 - MUST send them
- NIST’s proposal for new fatal alerts:
 - bad_certificate, unsupported_certificate, and certificate_revoked
draft-rescorla-tls-suiteb

Eric Rescorla
Network Resonance
ekr@networkresonance.com
Background: NSA Suite B

- NSA profile for COTS security algorithms

 Encryption AES 128/256
 Digital Signature ECDSA 256/384 (prime)
 Key Exchange ECDH or ECMQV 256/384
 Hashing SHA-256/384
What is this document?

- Adds SHA-256/SHA-384 cipher suites to TLS-ECC
- Adds ECC + GCM cipher suites (with SHA-256)
- Profile for specific curves for SuiteB compliance
 - P256 for 256-bit suites
 - P384 for 384-bit suites
 - Can ignore this if don’t want SuiteB
What to do?

- Reasonable comments received from Pasi
- Should this be a WG doc?
- What about specifying longer hashes for non-ECC cipher suites?
draft-rescorla-tls-extractor

Eric Rescorla
Network Resonance
ekr@networkresonance.com
Motivation

• More call to use TLS as a key management framework for other protocols

• Paradigmatic example: DTLS-SRTP
 – Negotiate DTLS in RTP media plane
 – Extension indicates “use SRTP for framing”
 – Need to extract keys to feed to SRTP

• Other cases suggested: TCP-AUTH, SCTP-AUTH

• Purpose of draft is to offer a single secure way to do this
General mechanism

- Use $PRF(master_secret,"\ EXTRACTOR\" + label)$
 - Labels need to be registered with IANA

- Advantages
 - Provides safe keying material (can’t be reversed)
 - Prevents collisions between external users
Comments from Pasi

- Must be signalled by some TLS extension
 - So both sides agree
- Remove “EXTRACTOR” — let IANA guarantee uniqueness
 - Pro: Compatibility with EAP
 - More care required to avoid clashes with TLS internal uses
- Change IANA policy to IETF Consensus
What to do?

- Should this be a WG doc?
Whither SRP

- Document basically done
- Question of status: Informational/Experimental or Proposed
- Some sentiment during WGLC for Proposed
- General issue: IPR status of ZKPPs
- No IPR disclosures on this document—this can’t be right
- But overall status unclear
- Other WGs have been inconsistent on this
- Discussion?